| 研究生: |
高憲朋 Gao, Xian-Peng |
|---|---|
| 論文名稱: |
數值模擬方法分析Inconel 625合金的離軸式定向能量沉積 Analysis of Off-Axis Directional Energy Deposition of Inconel 625 Alloy by Numerical Simulation |
| 指導教授: |
曾建洲
Tseng, Chien-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 積層製造 、直接式能量沉積 、離軸式 、含硫量 |
| 外文關鍵詞: | Additive Manufacturing, Directed Energy Deposition, Off-Axis, Sulfur content |
| 相關次數: | 點閱:149 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將針對積層製造中的離軸式定向能量沉積製程建立數值模型,將計算域分為氣體相氬氣和金屬相英高鎳合金(Inconel 625),利用套裝軟體ANSYS Fluent 18.0模擬金屬相受到高斯分布雷射加熱基板時,使其局部達到熔點使形成熔池,粉末掉入熔池中成型,配合床台移動逐漸燒熔成一道熔覆層,同時以動量及能量之耦合計算流場中空氣相和金屬相的溫度、速度、熔池這些暫態變化。
在模擬過程中配合使用者自定義函數(User-Defined Function,UDF),在動量部分考慮了固液化模型(Solidfication Model)、含硫(Sulfur Content)金屬的流動影響、表面張力(Surface Tension)、馬倫格尼力(Marangoni Force),使金屬熔體在運動過程及最終外觀更符合真實物理現象;而在能量方程式方面,而雷射將受到粉末濃度之遮蔽效應(Attenuation Effect),使能量隨加工深度及方向改變。另一方面由於雷射照射於粉末,使粉末在運動過程溫度逐漸升高,因此也考慮粉末熱(Powder Heat)之熱焓交換於方程式中。本文也將離軸型態噴嘴的金屬粉末沉積函數透過座標轉換的方式得到新的沉積函數寫入UDF中,在等效二維模型中進行計算。模型之計算將會根據文獻[27]中之實驗進行設置,並將模擬結果與該實驗結果的寬高進行比對,後續進而在觀察參數改動如發散角、硫成分這些改變的測試。最後也嘗試在現有的等效二維模型上發展為完全三維模型之計算,在該形態下模擬熔覆層。這些資訊在加工前就可經由模擬得知,在實際運用上降低尋找參數的時程,和避免原料成本的浪費。
This study established a numerical model based on the off-axis directed energy deposition process of additive manufacturing. A software package is used to simulate the metal substrate heated by Gaussian laser beams. Melting point of the substrate is reached locally to form a weld pool, into which powder falls to form a cladding layer gradually in accordance with the movement of the table. The coupling between momentum and energy is used to compute the transient variations of temperature and velocity of gaseous and metallic phases in the flow field. The change of flow field caused by sulfur-containing alloy is observed. This phenomenon leads to difference trend of temperature gradient of surface tension. When its temperature gradient switches from negative to positive value, a change in Marangoni flow field from outward to inward flow occurs. As a result, the width of the cladding layer is narrower and the melting pool is deeper because of the trend of inward flow.
[1] Gibson, I., Rosen, D. W., & Stucker, B. (2014). Additive manufacturing technologies (Vol. 17). New York: Springer.
[2] ASTM Committee F42 on Additive Manufacturing Technologies, & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. (2012).
[3] Campbell, I., Bourell, D., & Gibson, I. (2012). Additive manufacturing: rapid prototyping comes of age. Rapid prototyping journal, 18(4), 255-258.
[4] Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., ... & Wicker, R. B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the mechanical behavior of biomedical materials, 2(1), 20-32.
[5] Elia A. Guzzi , and Mark W. Tibbitt, (2019), Additive Manufacturing of Precision Biomaterials.
[6] King, W. E., Anderson, A. T., Ferencz, R. M., Hodge, N. E., Kamath, C., Khairallah, S. A., & Rubenchik, A. M. (2015). Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2(4), 041304.
[7] Gibson, I., Rosen, D., & Stucker, B. (2015). Directed energy deposition processes. In Additive Manufacturing Technologies (pp. 245-268). Springer, New York, NY.
[8] Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 3(1), 42-53.
[9] Vásquez, F., Ramos-Grez, J. A., & Walczak, M. (2012). Multiphysics simulation of laser–material interaction during laser powder depositon. The International Journal of Advanced Manufacturing Technology, 59(9-12), 1037-1045.
[10] Alimardani, M., Toyserkani, E., & Huissoon, J. P. (2007). A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process. Optics and Lasers in Engineering, 45(12), 1115-1130.
[11] De Oliveira, U., Ocelik, V., & De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2-3), 127-136.
[12] Zekovic, S., Dwivedi, R., & Kovacevic, R. (2007). Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition. International Journal of Machine Tools and Manufacture, 47(1), 112-123.
[13] Weisheit, A., Backes, G., Stromeyer, R., Gasser, A., Wissenbach, K., & Poprawe, R. (2001). Powder injection: the key to reconditioning and generating components using laser cladding. In Proceedings of Materials Week (pp. 1-8)
[14] Arrizubieta, J. I., Ruiz, J. E., Martinez, S., Ukar, E., & Lamikiz, A. (2017). Intelligent nozzle design for the Laser Metal Deposition process in the Industry 4.0. Procedia Manufacturing, 13, 1237-1244.
[15] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
[16] Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1), 12-49.
[17] He, X., & Mazumder, J. (2007). Transport phenomena during direct metal deposition. Journal of Applied Physics, 101(5), 053113.
[18] Fathi, A., Toyserkani, E., Khajepour, A., & Durali, M. (2006). Prediction of melt pool depth and dilution in laser powder deposition. Journal of Physics D: Applied Physics, 39(12), 2613.
[19] Picasso, M., Marsden, C. F., Wagniere, J. D., Frenk, A., & Rappaz, M. (1994). A simple but realistic model for laser cladding. Metallurgical and materials transactions B, 25(2), 281-291.
[20] Beckermann, C., Diepers, H. J., Steinbach, I., Karma, A., & Tong, X. (1999). Modeling melt convection in phase-field simulations of solidification. Journal of Computational Physics, 154(2), 468-496.
[21] Zhang, H. O., Kong, F. R., Wang, G. L., & Zeng, L. F. (2006). Numerical simulation of multiphase transient field during plasma deposition manufacturing. Journal of applied physics, 100(12), 123522.
[22] Heiple, C. R., Roper, J. R., Stagner, R. T., & Aden, R. J. (1983). Surface active element effects on the shape of GTA, laser and electron beam welds. Weld. J., 62(3), 72.
[23] Sahoo, P., Debroy, T., & McNallan, M. J. (1988). Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy. Metallurgical transactions B, 19(3), 483-491.
[24] Lee, Y., Nordin, M., Babu, S. S., & Farson, D. F. (2014). Effect of fluid convection on dendrite arm spacing in laser deposition. Metallurgical and Materials Transactions B, 45(4), 1520-1529.
[25] Lee, P. D., Quested, P. N., & McLean, M. (1998). Modelling of Marangoni effects in electron beam melting. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1739), 1027-1043.
[26] Koo, B. S. (2013). Simulation of melt penetration and fluid flow behavior during laser welding.
[27] Huang, Y., Khamesee, M. B., & Toyserkani, E. (2016). A comprehensive analytical model for laser powder-fed additive manufacturing. Additive Manufacturing, 12, 90-99.
[28] Dausinger, F., & Shen, J. (1993). Energy coupling efficiency in laser surface treatment. ISIJ international, 33(9), 925-933.
[29] Bedenko, D. V., & Kovalev, O. B. (2013). Modelling of heat and mass transfer in the laser cladding during direct metal deposition. Thermophysics and Aeromechanics, 20(2), 251-261.
[30] Qi, H., Mazumder, J., & Ki, H. (2006). Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. Journal of applied physics, 100(2), 024903.
[31] ANSYS Documentation, Fluent Theory Guide 15.0
[32] Moosmüller, H., & Sorensen, C. M. (2018). Single scattering albedo of homogeneous, spherical particles in the transition regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 219, 333-338.
[33] Pinkerton, A. J., & Li, L. (2004). Modelling powder concentration distribution from a coaxial deposition nozzle for laser-based rapid tooling. J. Manuf. Sci. Eng., 126(1), 33-41.
[34] http://www.specialmetals.com/divisions/welding-products/products/tradenames/
inconel.html
[35] Mills, K. C., Youssef, Y. M., Li, Z., & Su, Y. (2006). Calculation of thermophysical properties of Ni-based superalloys. ISIJ international, 46(5), 623-632.
[36] Huber, M. L., & Harvey, A. H. (2011). Thermal conductivity of gases. CRC Handbook of Chemistry and Physics, 92(CRC Handbook of Chemistry and Physics).
[37] Lemmon, E. W., & Jacobsen, R. T. (2004). Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. International journal of thermophysics, 25(1), 21-69.