簡易檢索 / 詳目顯示

研究生: 陳璿安
Chen, Hsuan-An
論文名稱: 透過可分離式表面聲波驅動之微晶片基於淚液蛋白脂質運載蛋白-1免疫感測器的糖尿病視網膜病變快速篩檢
Rapid Screening of Diabetic Retinopathy base on a Tear Fluid Protein Lipocalin 1 Immunosensor Using a Separable Surface Acoustic Wave-Driven Microchip
指導教授: 莊漢聲
Chuang, Han-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 66
中文關鍵詞: 表面聲波快速檢測淚液蛋白免疫感測器微晶片可分離式影像處理糖尿病視網膜病變蛋白脂質運載蛋白-1三明治免疫非侵入式低檢體體積
外文關鍵詞: Surface Acoustic Wave (SAW), Rapid Screening, Tear Biomarker, Immunosensor, Microchip, Separable Test Chip, Image Processing, Diabetic Retinopathy, Lipocalin-1, Sandwich Immunoassay, Non-invasiveness, Low Sample Volume
ORCID: https://orcid.org/0009-0007-7610-944X
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT III ACKNOWLEDGEMENT V CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1  INTRODUCTION 1 1.1 MOTIVATION AND OVERVIEW 1 1.2 DIABETIC RETINOPATHY (DR) 2 1.2.1 PROGRESSIVE STAGES OF DR 3 1.2.2 DIAGNOSIS OF DR 4 1.3 TEAR BIOMARKERS FOR DR 5 1.4 BIOMARKER DETECTION TECHNIQUES 7 1.5 PARTICLE MANIPULATION METHODS 9 1.6 SURFACE ACOUSTIC WAVE (SAW) 10 1.6.1 ACOUSTIC RADIATION FORCE (ARF) 12 1.6.2 ACOUSTIC STREAMING FLOW (ASF) 13 1.7 AIMS AND CONTRIBUTIONS OF THE THESIS 14 CHAPTER 2  MATERIALS AND METHODS 16 2.1 BEAD-BASED SANDWICHED IMMUNOASSAY PROTOCOL 16 2.2 ON-CHIP IMMUNOASSAY PROTOCOL 17 2.3 SAW-DRIVEN IMMUNOSENSOR ON MICROCHIP 20 2.3.1 SAW-DRIVEN MICROCHIP DESIGN AND FABRICATION 23 2.3.2 EXPERIMENTAL SETUP 26 2.4 IMAGE ANALYSIS 27 2.4.1 IMAGEJ 28 2.4.2 PYTHON PROGRAM 29 CHAPTER 3  RESULTS AND DISCUSSION 30 3.1 SIZE-DEPENDENT PARTICLE MANIPULATION 30 3.1.1 EFFECT OF FREQUENCY 30 3.1.2 EFFECT OF TEMPERATURE 34 3.1.3 DROPLET EVAPORATION 36 3.2 IMMUNOFLUORESCENCE ENHANCEMENT 38 3.3 VERIFICATION OF SANDWICHED IMMUNOCOMPLEX 40 3.4 SPECIFICITY BINDING WITH LCN1 41 3.5 CALIBRATION CURVE WITH LCN1 43 3.6 RESULTS OF HUMAN TEAR SAMPLES 45 CHAPTER 4  CONCLUSIONS 49 CHAPTER 5  FUTURE WORK 50 REFERENCES 51 APPENDIX I 61 APPENDIX II 62 APPENDIX III 63 APPENDIX IV 66

    [1] Konstantinou, G. N. Enzyme-linked immunosorbent assay (ELISA). Food Allergens: Methods and Protocols, vol. 1592, pp. 79-94, 2017.
    [2] Omar, N. A. S., Fen, Y. W., Abdullah, J., Chik, C. E. N. C. E., & Mahdi, M. A. Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sensing and bio-sensing research, vol. 20, pp. 16-21, 2018.
    [3] Tang, M. S., Shiu, S. C.-C., Godonoga, M., Cheung, Y.-W., Liang, S., Dirkzwager, R. M., Kinghorn, A. B., Fraser, L. A., Heddle, J. G., & Tanner, J. A. An aptamer-enabled DNA nanobox for protein sensing. Nanomedicine: Nanotechnology, Biology and Medicine, vol. 14, no.4, pp. 1161-1168, 2018.
    [4] Wang, W., & Lo, A. C. Diabetic retinopathy: pathophysiology and treatments. International Journal of Molecular Sciences, vol. 19, no.6, pp. 1816, 2018.
    [5] Wang, J.-C., Ku, H.-Y., Chen, T.-S., & Chuang, H.-S. Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing. Biosensors and Bioelectronics, vol. 89, pp. 701-709, 2017.
    [6] Augustsson, P., Barnkob, R., Wereley, S. T., Bruus, H., & Laurell, T. Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab Chip, vol. 11, no.24, pp. 4152-4164, 2011.
    [7] Williams, S. J., Kumar, A., & Wereley, S. T. Electrokinetic patterning of colloidal particles with optical landscapes. Lab on a Chip, vol. 8, no.11, pp. 1879-1882, 2008.
    [8] Aloke, K., Jae-Sung, K., Stuart, J. W., & Steven, T. W. A novel optically driven electrokinetic technique for manipulating nanoparticles. Proc.SPIE, vol. 7400, pp. 74000V, 2009.
    [9] Jae-Sung Kwon, R. T., Steven T. Wereley. Rapid Electrokinetic Patterning. Encyclopedia of Nanotechnology, 2012.
    [10] Destgeer, G., Cho, H., Ha, B. H., Jung, J. H., Park, J., & Sung, H. J. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab on a Chip, vol. 16, no.4, pp. 660-667, 2016.
    [11] Diabetic-Retinopathy, American Optometric Association. https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/diabetic-retinopathy.
    [12] Hagan, S., Martin, E., & Enríquez-de-Salamanca, A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. Epma Journal, vol. 7, no.1, pp. 1-20, 2016.
    [13] Can Demirdöğen, B., Demirkaya-Budak, S., Özge, G., & Mumcuoğlu, T. Evaluation of tear fluid and aqueous humor concentration of clusterin as biomarkers for early diagnosis of pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Current Eye Research, vol. 45, no.7, pp. 805-813, 2020.
    [14] Velez, G., Tang, P. H., Cabral, T., Cho, G. Y., Machlab, D. A., Tsang, S. H., Bassuk, A. G., & Mahajan, V. B. Personalized proteomics for precision health: identifying biomarkers of vitreoretinal disease. Translational vision science & technology, vol. 7, no.5, pp. 12-12, 2018.
    [15] Noh, S., Lee, H., Kim, J., Jang, H., An, J., Park, C., Lee, M. H., & Lee, T. Rapid electrochemical dual-target biosensor composed of an Aptamer/MXene hybrid on Au microgap electrodes for cytokines detection. Biosens Bioelectron, vol. 207, pp. 114159, 2022.
    [16] Attias, R., Dlugatch, B., Chae, M. S., Goffer, Y., & Aurbach, D. Changes in the interfacial charge-transfer resistance of Mg metal electrodes, measured by dynamic electrochemical impedance spectroscopy. Electrochemistry Communications, vol. 124, pp. 106952, 2021.
    [17] Akhtar, A. S., Soares, R. R. G., Pinto, I. F., & Russom, A. A portable and low-cost centrifugal microfluidic platform for multiplexed colorimetric detection of protein biomarkers. Anal Chim Acta, vol. 1245, pp. 340823, 2023.
    [18] Ulloa-Gomez, A. M., Agredo, A., Lucas, A., Somvanshi, S. B., & Stanciu, L. Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing. Biosensors and Bioelectronics, vol. 222, pp. 114938, 2023.
    [19] Polimeno, P., Magazzu, A., Iati, M. A., Patti, F., Saija, R., Boschi, C. D. E., Donato, M. G., Gucciardi, P. G., Jones, P. H., & Volpe, G. Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 218, pp. 131-150, 2018.
    [20] Williams, S. J., Kumar, A., Green, N. G., & Wereley, S. T. A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles. Nanoscale, vol. 1, no.1, pp. 133-137, 2009.
    [21] Dung Luong, T., & Trung Nguyen, N. Surface Acoustic Wave Driven Microfluidics – A Review. Micro and Nanosystemse, vol. 2, no.3, pp. 217-225, 2010.
    [22] Zida, S. I., Lin, Y.-D., & Khung, Y. L. Current Trends on Surface Acoustic Wave Biosensors. Advanced Materials Technologies, vol. 6, no.6, pp. 2001018, 2021.
    [23] Gao, Y., Fajrial, A. K., Yang, T., & Ding, X. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization. Biomaterials Science, vol. 9, no.5, pp. 1574-1582, 2021.
    [24] Agostini, M., Lunardelli, F., Gagliardi, M., Miranda, A., Lamanna, L., Luminare, A. G., Gambineri, F., Lai, M., Pistello, M., & Cecchini, M. Surface-Acoustic-Wave (SAW) Induced Mixing Enhances the Detection of Viruses: Application to Measles Sensing in Whole Human Saliva with a SAW Lab-On-a-Chip. Advanced Functional Materials, vol. 32, no.44, pp. 2201958, 2022.
    [25] Länge, K. Bulk and Surface Acoustic Wave Biosensors for Milk Analysis. Biosensors, vol. 12, no.8, 2022.
    [26] Destgeer, G., Cho, H., Ha, B. H., Jung, J. H., Park, J., & Sung, H. J. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab Chip, vol. 16, no.4, pp. 660-667, 2016.
    [27] Destgeer, G., Jung, J. H., Park, J., Ahmed, H., Park, K., Ahmad, R., & Sung, H. J. Acoustic impedance-based manipulation of elastic microspheres using travelling surface acoustic waves. RSC Advances, vol. 7, no.36, pp. 22524-22530, 2017.
    [28] Ahmad, R., Destgeer, G., Afzal, M., Park, J., Ahmed, H., Jung, J. H., Park, K., Yoon, T.-S., & Sung, H. J. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation. Analytical Chemistry, vol. 89, no.24, pp. 13313-13319, 2017.
    [29] Jung, J. H., Destgeer, G., Ha, B., Park, J., & Sung, H. J. On-demand droplet splitting using surface acoustic waves. Lab on a Chip, vol. 16, no.17, pp. 3235-3243, 2016.
    [30] Ahmed, H., Park, J., Destgeer, G., Afzal, M., & Sung, H. J. Surface acoustic wave-based micromixing enhancement using a single interdigital transducer. Applied Physics Letters, vol. 114, no.4, pp. 043702, 2019.
    [31] Zhang, N., Zuniga-Hertz, J. P., Zhang, E. Y., Gopesh, T., Fannon, M. J., Wang, J., Wen, Y., Patel, H. H., & Friend, J. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab on a Chip, vol. 21, no.5, pp. 904-915, 2021.
    [32] Matviykiv, O., Klymkovych, T., Bokla, N., & Stakhiv, V. Simulation and Analysis of the Interdigital Transducers Surface Acoustic Waves Generation and Propagation in Acoustophoretic Lab-Chip. IOP Conference Series: Materials Science and Engineering, vol. 1016, no.1, pp. 012022, 2021.
    [33] Collins, D. J., Neild, A., & Ai, Y. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab on a Chip, vol. 16, no.3, pp. 471-479, 2016.
    [34] Destgeer, G., Ha, B. H., Park, J., Jung, J. H., Alazzam, A., & Sung, H. J. Microchannel Anechoic Corner for Size-Selective Separation and Medium Exchange via Traveling Surface Acoustic Waves. Analytical Chemistry, vol. 87, no.9, pp. 4627-4632, 2015.
    [35] Skowronek, V., Rambach, R. W., Schmid, L., Haase, K., & Franke, T. Particle deflection in a poly (dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Analytical Chemistry, vol. 85, no.20, pp. 9955-9959, 2013.
    [36] Collins, D. J., Morahan, B., Garcia-Bustos, J., Doerig, C., Plebanski, M., & Neild, A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nature communications, vol. 6, no.1, pp. 8686, 2015.
    [37] Fischer, M. J. Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol, vol. 627, pp. 55-73, 2010.
    [38] Destgeer, G., & Sung, H. J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab on a Chip, vol. 15, no.13, pp. 2722-2738, 2015.
    [39] Csősz, É., Boross, P., Csutak, A., Berta, A., Tóth, F., Póliska, S., Török, Z., & Tőzsér, J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. Journal of Proteomics, vol. 75, no.7, pp. 2196-2204, 2012.
    [40] Gao, S., Zhang, S., Sun, X., Zheng, X., & Wu, J. Fluorescent aptasensor based on G-quadruplex-assisted structural transformation for the detection of biomarker lipocalin 1. Biosensors and Bioelectronics, vol. 169, pp. 112607, 2020.
    [41] Fan, Y.-J., Deng, C.-Z., Chung, P.-S., Tian, W.-C., & Sheen, H.-J. A high sensitivity bead-based immunoassay with nanofluidic preconcentration for biomarker detection. Sensors and Actuators B: Chemical, vol. 272, pp. 502-509, 2018.
    [42] Huergo, L. F., Selim, K. A., Conzentino, M. S., Gerhardt, E. C., Santos, A. R., Wagner, B., Alford, J. T., Deobald, N., Pedrosa, F. O., & de Souza, E. M. Magnetic bead-based immunoassay allows rapid, inexpensive, and quantitative detection of human SARS-CoV-2 antibodies. ACS Sensors, vol. 6, no.3, pp. 703-708, 2021.
    [43] Wang, J.-Y., Kwon, J.-S., Hsu, S.-M., & Chuang, H.-S. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. Lab on a Chip, vol. 20, no.2, pp. 356-362, 2020.
    [44] Zahertar, S., Torun, H., Tao, R., Canyelles-Pericas, P., Luo, J., Wu, Q., & Fu, Y.-Q. An integrated platform for metamaterial-based sensing and surface acoustic wave-based acoustofluidics utilising circular interdigital transducers. Sensors & Diagnostics, vol. 1, no.2, pp. 270-279, 2022.
    [45] Gu, Y. Y., Chen, C. Y., Mao, Z. M., Bachman, H., Becker, R., Rufo, J., Wang, Z. Y., Zhang, P. R., Mai, J., Yang, S. J., Zhang, J. X., Zhao, S. G., Ouyang, Y. S., Wong, D. T. W., Sadovsky, Y., & Huang, T. J. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, vol. 7, no.1, pp. 10, 2021.
    [46] Ohashi, Y., Dogru, M., & Tsubota, K. Laboratory findings in tear fluid analysis. Clinica chimica acta, vol. 369, no.1, pp. 17-28, 2006.
    [47] Jackson, D. C., Zeng, W., Wong, C. Y., Mifsud, E. J., Williamson, N. A., Ang, C.-S., Vingrys, A. J., & Downie, L. E. Tear interferon-gamma as a biomarker for evaporative dry eye disease. Investigative ophthalmology & visual science, vol. 57, no.11, pp. 4824-4830, 2016.
    [48] Zhou, L., & Beuerman, R. W. The power of tears: how tear proteomics research could revolutionize the clinic. Expert review of proteomics, vol. 14, no.3, pp. 189-191, 2017.
    [49] Devendran, C., Albrecht, T., Brenker, J., Alan, T., & Neild, A. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Lab Chip, vol. 16, no.19, pp. 3756-3766, 2016.
    [50] Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, vol. 145, 2020.
    [51] Mao, Z., Xie, Y., Guo, F., Ren, L., Huang, P.-H., Chen, Y., Rufo, J., Costanzo, F., & Huang, T. J. Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab on a Chip, vol. 16, no.3, pp. 515-524, 2016.
    [52] Destgeer, G., Ha, B. H., Park, J., Jung, J. H., Alazzam, A., & Sung, H. J. Travelling surface acoustic waves microfluidics. Physics Procedia, vol. 70, pp. 34-37, 2015.
    [53] Mampallil, D., Reboud, J., Wilson, R., Wylie, D., Klug, D. R., & Cooper, J. M. Acoustic suppression of the coffee-ring effect. Soft Matter, vol. 11, no.36, pp. 7207-7213, 2015.
    [54] Zhang, N., Zuniga-Hertz, J. P., Zhang, E. Y., Gopesh, T., Fannon, M. J., Wang, J., Wen, Y., Patel, H. H., & Friend, J. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab on a Chip, vol. 21, no.5, pp. 904-915, 2021.
    [55] Destgeer, G., Ha, B. H., Jung, J. H., & Sung, H. J. Submicron separation of microspheres via travelling surface acoustic waves. Lab on a Chip, vol. 14, no.24, pp. 4665-4672, 2014.
    [56] Destgeer, G., Ha, B., Park, J., & Sung, H. J. Lamb wave-based acoustic radiation force-driven particle ring formation inside a sessile droplet. Analytical Chemistry, vol. 88, no.7, pp. 3976-3981, 2016.
    [57] Gu, Y., Chen, C., Mao, Z., Bachman, H., Becker, R., Rufo, J., Wang, Z., Zhang, P., Mai, J., & Yang, S. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, vol. 7, no.1, pp. eabc0467, 2021.
    [58] Ding, X., Li, P., Lin, S.-C. S., Stratton, Z. S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F., & Huang, T. J. Surface acoustic wave microfluidics. Lab on a Chip, vol. 13, no.18, pp. 3626-3649, 2013.
    [59] Agostini, M., Lunardelli, F., Gagliardi, M., Miranda, A., Lamanna, L., Luminare, A. G., Gambineri, F., Lai, M., Pistello, M., & Cecchini, M. Surface‐Acoustic‐Wave (SAW) Induced Mixing Enhances the Detection of Viruses: Application to Measles Sensing in Whole Human Saliva with a SAW Lab‐On‐a‐Chip. Advanced Functional Materials, vol. 32, no.44, pp. 2201958, 2022.
    [60] Baumgartner, K., & Westerhausen, C. Recent advances of surface acoustic wave-based sensors for noninvasive cell analysis. Current Opinion in Biotechnology, vol. 79, pp. 102879, 2023.
    [61] Peng, T., Fan, C., Zhou, M., Jiang, F., Drummer, D., & Jiang, B. Rapid Enrichment of Submicron Particles within a Spinning Droplet Driven by a Unidirectional Acoustic Transducer. Anal Chem, vol. 93, no.39, pp. 13293-13301, 2021.

    無法下載圖示 校內:2028-08-17公開
    校外:2028-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE