| 研究生: |
陳璿安 Chen, Hsuan-An |
|---|---|
| 論文名稱: |
透過可分離式表面聲波驅動之微晶片基於淚液蛋白脂質運載蛋白-1免疫感測器的糖尿病視網膜病變快速篩檢 Rapid Screening of Diabetic Retinopathy base on a Tear Fluid Protein Lipocalin 1 Immunosensor Using a Separable Surface Acoustic Wave-Driven Microchip |
| 指導教授: |
莊漢聲
Chuang, Han-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 表面聲波 、快速檢測 、淚液蛋白 、免疫感測器 、微晶片 、可分離式 、影像處理 、糖尿病視網膜病變 、蛋白脂質運載蛋白-1 、三明治免疫 、非侵入式 、低檢體體積 |
| 外文關鍵詞: | Surface Acoustic Wave (SAW), Rapid Screening, Tear Biomarker, Immunosensor, Microchip, Separable Test Chip, Image Processing, Diabetic Retinopathy, Lipocalin-1, Sandwich Immunoassay, Non-invasiveness, Low Sample Volume |
| ORCID: | https://orcid.org/0009-0007-7610-944X |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Konstantinou, G. N. Enzyme-linked immunosorbent assay (ELISA). Food Allergens: Methods and Protocols, vol. 1592, pp. 79-94, 2017.
[2] Omar, N. A. S., Fen, Y. W., Abdullah, J., Chik, C. E. N. C. E., & Mahdi, M. A. Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sensing and bio-sensing research, vol. 20, pp. 16-21, 2018.
[3] Tang, M. S., Shiu, S. C.-C., Godonoga, M., Cheung, Y.-W., Liang, S., Dirkzwager, R. M., Kinghorn, A. B., Fraser, L. A., Heddle, J. G., & Tanner, J. A. An aptamer-enabled DNA nanobox for protein sensing. Nanomedicine: Nanotechnology, Biology and Medicine, vol. 14, no.4, pp. 1161-1168, 2018.
[4] Wang, W., & Lo, A. C. Diabetic retinopathy: pathophysiology and treatments. International Journal of Molecular Sciences, vol. 19, no.6, pp. 1816, 2018.
[5] Wang, J.-C., Ku, H.-Y., Chen, T.-S., & Chuang, H.-S. Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing. Biosensors and Bioelectronics, vol. 89, pp. 701-709, 2017.
[6] Augustsson, P., Barnkob, R., Wereley, S. T., Bruus, H., & Laurell, T. Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab Chip, vol. 11, no.24, pp. 4152-4164, 2011.
[7] Williams, S. J., Kumar, A., & Wereley, S. T. Electrokinetic patterning of colloidal particles with optical landscapes. Lab on a Chip, vol. 8, no.11, pp. 1879-1882, 2008.
[8] Aloke, K., Jae-Sung, K., Stuart, J. W., & Steven, T. W. A novel optically driven electrokinetic technique for manipulating nanoparticles. Proc.SPIE, vol. 7400, pp. 74000V, 2009.
[9] Jae-Sung Kwon, R. T., Steven T. Wereley. Rapid Electrokinetic Patterning. Encyclopedia of Nanotechnology, 2012.
[10] Destgeer, G., Cho, H., Ha, B. H., Jung, J. H., Park, J., & Sung, H. J. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab on a Chip, vol. 16, no.4, pp. 660-667, 2016.
[11] Diabetic-Retinopathy, American Optometric Association. https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/diabetic-retinopathy.
[12] Hagan, S., Martin, E., & Enríquez-de-Salamanca, A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. Epma Journal, vol. 7, no.1, pp. 1-20, 2016.
[13] Can Demirdöğen, B., Demirkaya-Budak, S., Özge, G., & Mumcuoğlu, T. Evaluation of tear fluid and aqueous humor concentration of clusterin as biomarkers for early diagnosis of pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Current Eye Research, vol. 45, no.7, pp. 805-813, 2020.
[14] Velez, G., Tang, P. H., Cabral, T., Cho, G. Y., Machlab, D. A., Tsang, S. H., Bassuk, A. G., & Mahajan, V. B. Personalized proteomics for precision health: identifying biomarkers of vitreoretinal disease. Translational vision science & technology, vol. 7, no.5, pp. 12-12, 2018.
[15] Noh, S., Lee, H., Kim, J., Jang, H., An, J., Park, C., Lee, M. H., & Lee, T. Rapid electrochemical dual-target biosensor composed of an Aptamer/MXene hybrid on Au microgap electrodes for cytokines detection. Biosens Bioelectron, vol. 207, pp. 114159, 2022.
[16] Attias, R., Dlugatch, B., Chae, M. S., Goffer, Y., & Aurbach, D. Changes in the interfacial charge-transfer resistance of Mg metal electrodes, measured by dynamic electrochemical impedance spectroscopy. Electrochemistry Communications, vol. 124, pp. 106952, 2021.
[17] Akhtar, A. S., Soares, R. R. G., Pinto, I. F., & Russom, A. A portable and low-cost centrifugal microfluidic platform for multiplexed colorimetric detection of protein biomarkers. Anal Chim Acta, vol. 1245, pp. 340823, 2023.
[18] Ulloa-Gomez, A. M., Agredo, A., Lucas, A., Somvanshi, S. B., & Stanciu, L. Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing. Biosensors and Bioelectronics, vol. 222, pp. 114938, 2023.
[19] Polimeno, P., Magazzu, A., Iati, M. A., Patti, F., Saija, R., Boschi, C. D. E., Donato, M. G., Gucciardi, P. G., Jones, P. H., & Volpe, G. Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 218, pp. 131-150, 2018.
[20] Williams, S. J., Kumar, A., Green, N. G., & Wereley, S. T. A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles. Nanoscale, vol. 1, no.1, pp. 133-137, 2009.
[21] Dung Luong, T., & Trung Nguyen, N. Surface Acoustic Wave Driven Microfluidics – A Review. Micro and Nanosystemse, vol. 2, no.3, pp. 217-225, 2010.
[22] Zida, S. I., Lin, Y.-D., & Khung, Y. L. Current Trends on Surface Acoustic Wave Biosensors. Advanced Materials Technologies, vol. 6, no.6, pp. 2001018, 2021.
[23] Gao, Y., Fajrial, A. K., Yang, T., & Ding, X. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization. Biomaterials Science, vol. 9, no.5, pp. 1574-1582, 2021.
[24] Agostini, M., Lunardelli, F., Gagliardi, M., Miranda, A., Lamanna, L., Luminare, A. G., Gambineri, F., Lai, M., Pistello, M., & Cecchini, M. Surface-Acoustic-Wave (SAW) Induced Mixing Enhances the Detection of Viruses: Application to Measles Sensing in Whole Human Saliva with a SAW Lab-On-a-Chip. Advanced Functional Materials, vol. 32, no.44, pp. 2201958, 2022.
[25] Länge, K. Bulk and Surface Acoustic Wave Biosensors for Milk Analysis. Biosensors, vol. 12, no.8, 2022.
[26] Destgeer, G., Cho, H., Ha, B. H., Jung, J. H., Park, J., & Sung, H. J. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab Chip, vol. 16, no.4, pp. 660-667, 2016.
[27] Destgeer, G., Jung, J. H., Park, J., Ahmed, H., Park, K., Ahmad, R., & Sung, H. J. Acoustic impedance-based manipulation of elastic microspheres using travelling surface acoustic waves. RSC Advances, vol. 7, no.36, pp. 22524-22530, 2017.
[28] Ahmad, R., Destgeer, G., Afzal, M., Park, J., Ahmed, H., Jung, J. H., Park, K., Yoon, T.-S., & Sung, H. J. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation. Analytical Chemistry, vol. 89, no.24, pp. 13313-13319, 2017.
[29] Jung, J. H., Destgeer, G., Ha, B., Park, J., & Sung, H. J. On-demand droplet splitting using surface acoustic waves. Lab on a Chip, vol. 16, no.17, pp. 3235-3243, 2016.
[30] Ahmed, H., Park, J., Destgeer, G., Afzal, M., & Sung, H. J. Surface acoustic wave-based micromixing enhancement using a single interdigital transducer. Applied Physics Letters, vol. 114, no.4, pp. 043702, 2019.
[31] Zhang, N., Zuniga-Hertz, J. P., Zhang, E. Y., Gopesh, T., Fannon, M. J., Wang, J., Wen, Y., Patel, H. H., & Friend, J. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab on a Chip, vol. 21, no.5, pp. 904-915, 2021.
[32] Matviykiv, O., Klymkovych, T., Bokla, N., & Stakhiv, V. Simulation and Analysis of the Interdigital Transducers Surface Acoustic Waves Generation and Propagation in Acoustophoretic Lab-Chip. IOP Conference Series: Materials Science and Engineering, vol. 1016, no.1, pp. 012022, 2021.
[33] Collins, D. J., Neild, A., & Ai, Y. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab on a Chip, vol. 16, no.3, pp. 471-479, 2016.
[34] Destgeer, G., Ha, B. H., Park, J., Jung, J. H., Alazzam, A., & Sung, H. J. Microchannel Anechoic Corner for Size-Selective Separation and Medium Exchange via Traveling Surface Acoustic Waves. Analytical Chemistry, vol. 87, no.9, pp. 4627-4632, 2015.
[35] Skowronek, V., Rambach, R. W., Schmid, L., Haase, K., & Franke, T. Particle deflection in a poly (dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Analytical Chemistry, vol. 85, no.20, pp. 9955-9959, 2013.
[36] Collins, D. J., Morahan, B., Garcia-Bustos, J., Doerig, C., Plebanski, M., & Neild, A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nature communications, vol. 6, no.1, pp. 8686, 2015.
[37] Fischer, M. J. Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol, vol. 627, pp. 55-73, 2010.
[38] Destgeer, G., & Sung, H. J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab on a Chip, vol. 15, no.13, pp. 2722-2738, 2015.
[39] Csősz, É., Boross, P., Csutak, A., Berta, A., Tóth, F., Póliska, S., Török, Z., & Tőzsér, J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. Journal of Proteomics, vol. 75, no.7, pp. 2196-2204, 2012.
[40] Gao, S., Zhang, S., Sun, X., Zheng, X., & Wu, J. Fluorescent aptasensor based on G-quadruplex-assisted structural transformation for the detection of biomarker lipocalin 1. Biosensors and Bioelectronics, vol. 169, pp. 112607, 2020.
[41] Fan, Y.-J., Deng, C.-Z., Chung, P.-S., Tian, W.-C., & Sheen, H.-J. A high sensitivity bead-based immunoassay with nanofluidic preconcentration for biomarker detection. Sensors and Actuators B: Chemical, vol. 272, pp. 502-509, 2018.
[42] Huergo, L. F., Selim, K. A., Conzentino, M. S., Gerhardt, E. C., Santos, A. R., Wagner, B., Alford, J. T., Deobald, N., Pedrosa, F. O., & de Souza, E. M. Magnetic bead-based immunoassay allows rapid, inexpensive, and quantitative detection of human SARS-CoV-2 antibodies. ACS Sensors, vol. 6, no.3, pp. 703-708, 2021.
[43] Wang, J.-Y., Kwon, J.-S., Hsu, S.-M., & Chuang, H.-S. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. Lab on a Chip, vol. 20, no.2, pp. 356-362, 2020.
[44] Zahertar, S., Torun, H., Tao, R., Canyelles-Pericas, P., Luo, J., Wu, Q., & Fu, Y.-Q. An integrated platform for metamaterial-based sensing and surface acoustic wave-based acoustofluidics utilising circular interdigital transducers. Sensors & Diagnostics, vol. 1, no.2, pp. 270-279, 2022.
[45] Gu, Y. Y., Chen, C. Y., Mao, Z. M., Bachman, H., Becker, R., Rufo, J., Wang, Z. Y., Zhang, P. R., Mai, J., Yang, S. J., Zhang, J. X., Zhao, S. G., Ouyang, Y. S., Wong, D. T. W., Sadovsky, Y., & Huang, T. J. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, vol. 7, no.1, pp. 10, 2021.
[46] Ohashi, Y., Dogru, M., & Tsubota, K. Laboratory findings in tear fluid analysis. Clinica chimica acta, vol. 369, no.1, pp. 17-28, 2006.
[47] Jackson, D. C., Zeng, W., Wong, C. Y., Mifsud, E. J., Williamson, N. A., Ang, C.-S., Vingrys, A. J., & Downie, L. E. Tear interferon-gamma as a biomarker for evaporative dry eye disease. Investigative ophthalmology & visual science, vol. 57, no.11, pp. 4824-4830, 2016.
[48] Zhou, L., & Beuerman, R. W. The power of tears: how tear proteomics research could revolutionize the clinic. Expert review of proteomics, vol. 14, no.3, pp. 189-191, 2017.
[49] Devendran, C., Albrecht, T., Brenker, J., Alan, T., & Neild, A. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Lab Chip, vol. 16, no.19, pp. 3756-3766, 2016.
[50] Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, vol. 145, 2020.
[51] Mao, Z., Xie, Y., Guo, F., Ren, L., Huang, P.-H., Chen, Y., Rufo, J., Costanzo, F., & Huang, T. J. Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab on a Chip, vol. 16, no.3, pp. 515-524, 2016.
[52] Destgeer, G., Ha, B. H., Park, J., Jung, J. H., Alazzam, A., & Sung, H. J. Travelling surface acoustic waves microfluidics. Physics Procedia, vol. 70, pp. 34-37, 2015.
[53] Mampallil, D., Reboud, J., Wilson, R., Wylie, D., Klug, D. R., & Cooper, J. M. Acoustic suppression of the coffee-ring effect. Soft Matter, vol. 11, no.36, pp. 7207-7213, 2015.
[54] Zhang, N., Zuniga-Hertz, J. P., Zhang, E. Y., Gopesh, T., Fannon, M. J., Wang, J., Wen, Y., Patel, H. H., & Friend, J. Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab on a Chip, vol. 21, no.5, pp. 904-915, 2021.
[55] Destgeer, G., Ha, B. H., Jung, J. H., & Sung, H. J. Submicron separation of microspheres via travelling surface acoustic waves. Lab on a Chip, vol. 14, no.24, pp. 4665-4672, 2014.
[56] Destgeer, G., Ha, B., Park, J., & Sung, H. J. Lamb wave-based acoustic radiation force-driven particle ring formation inside a sessile droplet. Analytical Chemistry, vol. 88, no.7, pp. 3976-3981, 2016.
[57] Gu, Y., Chen, C., Mao, Z., Bachman, H., Becker, R., Rufo, J., Wang, Z., Zhang, P., Mai, J., & Yang, S. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, vol. 7, no.1, pp. eabc0467, 2021.
[58] Ding, X., Li, P., Lin, S.-C. S., Stratton, Z. S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F., & Huang, T. J. Surface acoustic wave microfluidics. Lab on a Chip, vol. 13, no.18, pp. 3626-3649, 2013.
[59] Agostini, M., Lunardelli, F., Gagliardi, M., Miranda, A., Lamanna, L., Luminare, A. G., Gambineri, F., Lai, M., Pistello, M., & Cecchini, M. Surface‐Acoustic‐Wave (SAW) Induced Mixing Enhances the Detection of Viruses: Application to Measles Sensing in Whole Human Saliva with a SAW Lab‐On‐a‐Chip. Advanced Functional Materials, vol. 32, no.44, pp. 2201958, 2022.
[60] Baumgartner, K., & Westerhausen, C. Recent advances of surface acoustic wave-based sensors for noninvasive cell analysis. Current Opinion in Biotechnology, vol. 79, pp. 102879, 2023.
[61] Peng, T., Fan, C., Zhou, M., Jiang, F., Drummer, D., & Jiang, B. Rapid Enrichment of Submicron Particles within a Spinning Droplet Driven by a Unidirectional Acoustic Transducer. Anal Chem, vol. 93, no.39, pp. 13293-13301, 2021.
校內:2028-08-17公開