簡易檢索 / 詳目顯示

研究生: 簡慧亭
Chien, Huei-ting
論文名稱: 自組裝單分子膜在量子點敏化TiO2光電極製備及其應用
Quantum-Dots Sensitized TiO2 Photoelectrodes Prepared by inducing of a Self-Assembly Monolayer
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 113
中文關鍵詞: 染料敏化太陽能電池硒化鎘熱處理硫化鋅化學浴沉積法自組裝單分子膜量子點
外文關鍵詞: Quantum Dots, Chemical bath deposition, Zinc sulfide, post-heated annealing, Self-assembly monolayer, Dye-sensitized solar cell, Cadmium selenide
相關次數: 點閱:119下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用自我組裝單分子層(SAM):MPTMS,來修飾TiO2光電極的表面以應用於CdSe量子點敏化太陽能電池。結果發現,提供化學浴沉積法 (CBD) 沈積 CdSe的三種不同陰、陽離子濃度(0.5M、0.1M、0.05M) 與CBD層數中,以 0.05M 的離子濃度以及五層的CBD層數能達到較佳的光電轉化效率,其在TiO2/CdSe(5) 以及 TiO2/MPTMS/CdSe(5) 的效率分別為1.5和1.8%。由紫外光-可見光光譜圖和暗電流的結果可知,經過 SAM 修飾過的電極,其有較高的吸光強度以及較小的暗電流。這是因為 SAM 能提高CdSe 在TiO2 薄膜表面的覆蓋率與沉積量,降低 TiO2 與電解質接觸的面積,以抑制電荷再結合的機率,因而提昇光電轉化效率。此外,本研究也於CdSe量子點外部組裝一層很薄的硫化鋅 (ZnS) 以減少電池漏電流的發生,使TiO2/MPTMS/CdSe(5)/ZnS 光電池的效率能提升至2.29%。最後,以 300℃ 對光電極進行熱處理來提高 CdSe 量子點的結晶性,並減少光電極界面的缺陷,以提高電池的光電流。此方法能使TiO2/MPTMS/CdSe(5)/ZnS/post-heated光電池達到2.65% 的最佳效率。

    In this study, self-assembly monolayer (SAM), 3-mercaptopropyl trimethoxysilane, is used to modify the surface of TiO2 electrode for a CdSe quantum dots (QDs)-sensitized solar cell. The results show that the three various concentration (0.5M、0.1M、0.05M) of ions for the deposition of CdSe by chemical bath deposition (CBD) and the CBD layers, 0.05M ions concentration and CBD five layers can obtain the highest energy conversion efficiency. For TiO2/CdSe(5) and TiO2/MPTMS/CdSe(5), the efficiency is 1.5 and 1.8%, respectively. From UV-vis spectra and dark current result, the SAM-modified cell displays a higher absorbance and a lower dark current. It is because SAM shows a better coverage and a higher incorporated amount of CdSe. This can reduce the contact area between TiO2 and electrolyte, inhibiting the charge recombination and enhancing the efficiency. Here, a thin ZnS film is also used as a passive layer to assembly on the CdSe QD to decrease the leakage current of the cell. The efficiency of this cell, TiO2/MPTMS/CdSe(5)/ZnS, can be improved to 2.29%. In order to increase the photocurrents of the cell, a further post-heated annealing process was carried out. An energy conversion efficiency of 2.65 % is achieved using a TiO2/MPMTS/CdSe/ZnS/post-heated electrode, under the illumination of one sun (AM 1.5, 100 mW/cm2).

    中文摘要..................................................I Abstract.................................................II 誌謝....................................................III 目錄.....................................................VI 表目錄.................................................VIII 圖目錄...................................................IX 第一章 緒論...............................................1 1-1 前言..................................................1 1-2 太陽能電池發展的現況..................................2 1-3 研究動機與目的........................................4 第二章 實驗原理及文獻回顧.................................7 2-1 DSSC之工作原理........................................7 2-2 DSSC之組成結構........................................8 2-2.1 透明導電玻璃........................................9 2-2.2 氧化物半導體.......................................10 2-2.3 染料光敏化劑.......................................11 2-2.4 電解液.............................................12 2-2.5 金屬/導電玻璃對電極................................15 2-3 DSSC之沿革及發展現況.................................15 2-4 半導體奈米材料與量子點….............................16 2-5 量子點之特性….......................................18 2-5.1 量子侷限效應.......................................18 2-5.2 衝擊離子化效應與歐傑再結合效應.....................22 2-5.3 迷你傳送帶效應.....................................24 2-6 量子點合成及組裝技術.................................26 2-6.1 自組裝單分子膜.....................................26 2-6.2 化學浴沉積法.......................................30 2-6.3 自組裝單分子膜與化學浴沉積共聯結組裝法…...........31 2-7 量子點光敏化劑在DSSC之發展及其應用...................33 2-7.1 量子點DSSC之沿革及發展現況.........................33 2-7.2 量子點與氧化物半導體之能階搭配…...................34 2-7.3 量子點與氧化物半導體界面的特性…...................35 2-7.4 硫化鋅在量子點DSSC光電極上之應用….................37 2-7.5 熱處理在量子點DSSC光電極上之應用...................37 2-7.6 多硫成份電解液.....................................38 2-8 DSSC之電流電壓輸出特性….............................40 第三章 實驗儀器與方法....................................45 3-1 儀器設備.............................................45 3-2 實驗藥品.............................................53 3-3 實驗流程.............................................55 3-3.1 清洗透明導電玻璃基板...............................56 3-3.2 TiO2膠體溶液的製備.................................57 3-3.3 TiO2薄膜的製備.....................................57 3-3.4 SAMs在TiO2薄膜上的改質.............................58 3-3.5 化學浴沉積法合成並組裝CdSe及ZnS量子點…............58 3-3.6 高溫熱處理.........................................61 3-3.7 配製電解液.........................................61 3-3.8 組裝電池...........................................61 第四章 實驗數據與結果討論................................64 4-1 TiO2薄膜特性分析.....................................64 4-2 CdSe量子點組裝在TiO2薄膜上之光學特性分析.............66 4-2.1 不同CBD沉積濃度製備TiO2/CdSe電極之光學特性分析.....66 4-2.2 不同CBD沉積濃度製備TiO2/MPTMS/CdSe電極之光學特性分 析.................................................69 4-3 CdSe量子點敏化太陽能電池的效能分析...................73 4-3.1 TiO2/CdSe、TiO2/MPTMS/CdSe系統之電池效能分析.......73 4-3.2 ZnS保護層在量子點敏化太陽能電池的應用…............83 4-3.3 熱處理在量子點敏化太陽能電池的應用…...............74 4-3.4 ZnS保護層/熱處理在量子點敏化太陽能電池的應用.......93 第五章 結論..............................................99 第六章 未來工作及建議...................................101 參考文獻................................................103 自述....................................................113

    1.H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402 (1976)
    2.B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737 (1991)
    3.T. Miyasaka, M. Ikegami and Y. Kijitori, “Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” J. Electrochem. Soc. 154, A455 (2007)
    4.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835 (2005)
    5.Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510, (1961)
    6.A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res 33, 269 (2000)
    7.M. Grätzel, “Solar Energy Conversion by Dye-sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841, (2005)
    8.G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells” Solar Energy Mater. Solar Cells 70, 85 (2001)
    9.N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
    10.D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
    11.S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
    12.P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte” Chem. Commun., 2972 (2002)
    13.W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Commun., 374 (2002)
    14.N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An efficient organogelator for ionic liquids to prepare stable quasi-solidstate dye-sensitized solar cells” J. Mater. Chem. 16, 2978 (2006)
    15.A. F. Nogueira and M. D. Paoli, “A day sensitized TiO2 photovoltatic cell constructed with an elastomeric electrolyte” Solar Energy Mater. Solar Cells 61, 135 (2000)
    16.W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine” J. Phys. Chem. B 105, 12809 (2001)
    17.T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells” Nano Lett. 2, 1259 (2002)
    18.P. Malik, M. Castro and C. Carrot, “Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications” Polym. Degrad. Stabil. 91, 634 (2006)
    19.P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,T. Sekiguchi and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte” Nature Mater. 2, 402 (2003)
    20.P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells” Journal of Fluorine Chem. 125, 1241 (2004)
    21.P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell” J. Am. Chem. Soc. 126, 13590 (2004)
    22.Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties” J. Phys. Chem. 95, 525 (1991).
    23.W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002).
    24.W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854 (2003).
    25.X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics” Science 307, 538 (2005)
    26.L. Spanhel, M. Hasse, H. Weller and A. Henglein, “Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles” A., J. Am. Chem. Soc. 109, 5649 (1987).
    27.A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion” Inorg. Chem. 44, 6893 (2005)
    28.W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510 (1961)
    29.A. J. Nozik, “Quantum dot solar cells” Physica E 14, 115 (2002)
    30.I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462 (2005)
    31.L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416 (2004)
    32.L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14, 1323 (2002)
    33.L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78 (2005)
    34.M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am. Chem. Soc. 122, 11480 (2000)
    35.C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Trough the Metal-Insulator Transition” Science 277, 1978 (1997)
    36.Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703 (1997)
    37.A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070 (2002)
    38.A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, “Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys. Chem. B 107, 4245 (2003)
    39.P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate” Langmuir 18, 4495 (2002)
    40.S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
    41.M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
    42.P. O’Brien, J. McAleese, “Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8, 2309 (1998)
    43.J. L. Blackburn, D. C. Selmarten, A. J. Nozik,“Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
    44.M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of Nanoparticles and Biomarcromolecules” Acc. Chem. Res. 35, 847, 2002
    45.H. Haick, M. Ambrico, T. Ligonzo, D. Cahen, “Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions” Adv. Mater. 16(23-24), 2145, 2004
    46.I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
    47.L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots” Chem. Commun., 1030 (2002)
    48.Y. J. Shen and Y. L. Lee, “Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications” Nanotechnology 19, 45602 (2008)
    49.A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals” J. Phys. Chem. B 103, 3065 (1999)
    50.M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution” Adv. Mater. 15, 1844 (2003)
    51.X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” J. Coll. Interf. Sci. 252, 77 (2002)
    52.J. M. Nedeljković, O. I. Mićić, S. P. Ahrenkiel, A. Miedaner and A. J. Nozik, “Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP-TiO2 Composites” J. Am. Chem. Soc. 126, 2632 (2004)
    53.L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals”, Nature Mater. 2, 382 (2003)
    54.K. W. Jun, P. K. Khannaa, K. B. Honga, J. O. Baeg and Y. D. Suha, “Synthesis of InP nanocrystals from indium chloride and sodium phosphide by solution route” Mater. Chem. Phys. 96 494 (2006)
    55.M. R. Greenberg, W. Chen, B. N. Pulford, G. A. Smolyakov, Y. B. Jiang, S. D. Bunge, T. J. Boyle and Marek Osiński, “Synthesis and Characterization of InP and InN Colloidal Quantum Dots” Proc.SPIE 5705, 68 (2005)
    56.A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica, L. Manna and L. Vasanelli, “Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion” Micron 31, 253 (2000)
    57.J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method” Solid State Commun. 124, 45 (2002)
    58.S. Abd-Lefdil, C. Messaoudi, M. Abd-Lefdil and D. Sayah, “Temperature Growth and Annealing Effects on CdS Thin Films Prepared by Chemical Bath Deposition Process” Phys.Stat. Sol. (a) 168, 417 (1998)
    59.R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
    60.P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots” Appl. Phys. Lett. 66, 349 (1995)
    61.R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
    62.J. L. Blackburn, D. C. Selmarten and A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
    63.S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, “Quantum Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of Self-Assembly Monolayer and Chemical Bath Deposition” Appl. Phys. Lett. 90, 143517 (2007)
    64.C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells” Appl. Phys. Lett .91, 053503 (2007).
    65.林昇志, “量子點的組裝及其在染料敏化太陽能電池的應用” 國立成功大學化學工程學系碩士論文 民國95年
    66.A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153 (1998).
    67.Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles” J. Am. Chem. Soc. 127, 7632 (2005).
    68.L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, “High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells” Appl. Phys. Lett. 91, 023116 (2007)
    69.Y. L. Lee, Y. S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe,” Adv. Funct. Mater. 19, 604 (2009)
    70.M. Grätzel, “Photoelectrochemical cells” Nature 414, 338 (2001)
    71.S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides” J. Mater. Chem., 12, 1459 (2002)
    72.M.E. Rincon, M, Sanchez, A. Olea, I. Ayala, P.K. Nair, “Photoelectrochemical behavior of chemically deposited CdSe and coupled CdS/CdSe semiconductor films” solar ener. Solar Energy Mater. Solar Cells 52 , 399 (1998)
    73.M.E. Rincon, A. Jimenez, A. Orihuela, G. Martinez, Thermal treatment effects in the photovoltaic conversion of spray-painted TiO2 coatings sensitized by chemically deposited CdSe thin films” Solar Energy Mater. Solar Cells 70 , 163 (2001)
    74.Q. Shen and T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” Jpn J. Appl. Phys. 43, 2946 (2004)
    75.G. Milczareka, A. Kasuyab, S. Mamykinb, T. Araib, K. Shinodab and K. Tohji, “Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production” Int. J. Hydrogen Energy 28, 919 (2003)
    76.C. H. J. Liu, J. Olsen, D. R. Saunders and J. H. Wang, “Photoactivation of CdSe Films for Photoelectrochemical Cells” J. Electrochem. Soc. 128, 1224 (1981)
    77.Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki, “Electrophoretically Deposited CdS and CdSe Anodes for Photoelectrochemical Cells” J. Electrochem. Soc. 130, 43 (1983)
    78.Y. Bessekhouada, M. Mohammedib and M. Trari, “Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst” Solar Energy Mater. Solar Cells 73, 339 (2002)
    79.S. Licht, “A desription of energy conversion in photoelectrochemical solar cells” Nature 330, 148 (1987)
    80.Y. L. Lee and C. H. Chang, “Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells” J. Power Sources 185, 584 (2008)
    81.R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochim. Acta 50, 2453 (2005)
    82.J. V. D. Lagemaat and A. J. Frank, “ Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films : Transient Photocurrent and Random-Walk Modeling Studies” J. Phys. Chem. B 105, 11194 (2001)
    83.A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, “Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 104, 949 (2000)

    下載圖示 校內:2010-07-20公開
    校外:2010-07-20公開
    QR CODE