| 研究生: |
劉昕融 Liu, Hsin-Jung |
|---|---|
| 論文名稱: |
行星球磨暨熱壓燒結製備含鈉碲化鉛塊材及其熱電性質之研究 Thermoelectric properties of PbTe:Na bulk materials fabricated by planetary ball milling and hot-pressed sintering |
| 指導教授: |
黃啓祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | PbTe:Na 、行星球磨法 、熱壓燒結 |
| 外文關鍵詞: | PbTe:Na, planetary ball milling, hot-pressed sintering |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PbTe 系合金是中溫區 (400~700 K) 熱電發電中最常用的熱電材料,其 ZT 值的研究主要集中在兩個方向:一、調控熱電塊材的載子濃度,進而增加塊材的電傳導率,以提升功率因子 (power factor) ;二、藉由摻雜使其散射聲子,降低熱傳導率而獲得較佳之熱電優值。
本研究以行星球磨法將鈉摻雜於 PbTe 粉體形成複合粉體,再以熱壓燒結於 450 ~ 550 ℃ 、 50 MPa 壓力下製成 PbTe : Na 複合塊材,檢討鈉摻雜量及熱壓燒結溫度對塊材的顯微結構及熱電性質的影響。
於製程上,有別於前人耗時耗能之熔煉法,本研究使用省時節能之行星球磨法,將鈉摻雜於PbTe粉體,再以熱壓燒結成為PbTe:Na熱電塊材。鈉摻雜量是由添加適量的Na2Te而得。利用行星球磨法所得之複合粉體之大小為1 ~ 5 μm,經熱壓燒結後會形成相對密度大於95%,晶粒大小為3 ~ 10 μm之緻密熱電塊材。摻雜的鈉粒子經熱壓燒結後並不存在於 PbTe 晶界上,而是於 PbTe 中產生間隙型固溶。
在熱電性質方面,PbTe : Na 塊材的電傳行為是隨鈉摻雜量而異,經鈉摻雜後會由p型半導體轉變成 n 型摻雜半導體的電傳行為。此外,功率因子 (S2σ) 則隨鈉添加量與量測溫度之增加而增加,其熱傳導率於整個量測溫度區間皆低於未摻雜之PbTe塊材,而鈉摻雜量 1.0 at.% 之 PbTe : Na 複合粉體以熱壓燒結於 500 ℃ 燒結所得之塊材,其熱電優值 (ZT) 於 700 K 時有最大值 0.81。
n 型傳導的 PbTe : Na塊材其室溫載子濃度、相對密度與導電率是隨熱壓燒結溫度之增加而增加;而Seebeck 係數是隨燒結溫度之增加而減少,其中鈉摻雜量為1.5 at.% 的PbTe:Na-550 ℃ 塊材,其功率因子在 650 K 時有最大值 1.33 mW/m-K2,此值為未摻雜鈉的 PbTe-550 ℃ 塊材之功率因子 (0.105 mW/m-K2) 的 28.4 倍。
To improve thermoelectric properties of PbTe:Na bulk materials, a manufacturing process that combined with planetary ball milling and hot-pressed sintering in the preparation of PbTe:Na bulk materials was studied. Samples with over 95% relative densities and 3~10 μm of grain sizes were obtained through hot-pressed at 500 ℃. Samples were measured and compared with those of raw ingots at temperatures from 300 K to 700 K to demonstrate the influence of Na contents on thermoelectric properties. The results revealed that increasing the Na contents improved the thermoelectric performance. PbTe: Na bulk showed the n-type conductivity. It was different from previous studies. A maximum ZT of 0.81 at 700 K was achieved for the n-type PbTe:1 at.% Na bulk.
1. D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, USA, (1995).
2. G. S. Nolas, J. W. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg (2001).
3. D. M. Rowe, Thermoelectrics Handbook: Micro to Nano, CRC Press, New York (2006).
4. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit,” Science, 303, 818 (2004).
5. E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis and M. G. Kanatzidis, “Nanostructuring, Compositional Fluctuations and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. The Myth of Solid Solutions,” J. Am. Chem. Soc., 127, 9177 (2005).
6. X. Ji, B. Zhang, Z. Su, T. Holgate, J. He and T. M. Tritt, “Nanoscale Granular Boundaries in Polycryatalline Pb0.75Sn0.25Te: An Innovative Approach to Enhance the Thermoelectric Figure of Merit, ” Phys. Status A, 206, 2, 211 (2009).
7. Y. Q. Cao, T. J. Zhu and X. B. Zhao, “Low Thermal Conductivity and improved Figure of Merit in Fine-Grained Binary PbTe Thermoelectric Alloys,” J. Phys. D: Appl. Phys., 42, 015406 (2009).
8. Y. Pei, N. A. Heinz, A. LaLonde and G. J. Snyder, “Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride,” Energy Environ. Sci., 4, 3640 (2011).
9. Z. Y. Li, J. F. Li, W. Y. Zhao, Q. Tan, T. R. Wei, C. F. Wu, and Z. B. Xing, “PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion,” Applied Physics Letters 104, 113905 (2014).
10. H. C. Wang, J.H. Bahk, C. Y. Kang, J.Hwang, K. Kim, A. Shakouri and W. Kim, “Large enhancement in the thermoelectric properties of Pb0.98Na0.02Te by optimizing the synthesis conditions,” J. Mater. Chem. A, 1, 11269-11278 (2013).
11. C. Kang, H.C. Wang, H. Kim, S. Kim and W. Kim, “Effect of Excess Na on the Morphology and Thermoelectric properties of NaxPb1-xTe0.85Se0.15,” J. Journal of Electronic Materials, 43, 2, (2014).
12. D. R. Brown, Y. Pei, H. Wang and G. Jeffrey Snyder, “Linear dependence of the Hall coefficient of 1% Na doped PbTe with varying magnetic field,” Phys. Status Solidi A, 1–3 (2014).
13. S. A. Yamini, T.Ikeda, A.Lalonde, Y.Pei, S. X. Doua and G. Jeffrey Snyder, “Rational design of p-type thermoelectric PbTe: temperature dependent sodium solubility,” J. Mater. Chem. A, 1, 8725 (2013).
14. C. H. Kuo, “Thermoelectric properties of telluride bulk materials fabricated by ball milling and spark plasma sintering,” Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (2010).
15. Z. H. Dughaish, “Lead telluride as a thermoelectric material for thermoelectric power generation ,” Phys. B, 322, 205 (2002).
16. J. C. Lin, K. C. Hsieh, R. C. Sharme and Y. A. Chang, “The Pb-Te (Lead-Tellurium) System,” Bulletin of Alloy Phase Diagrams, ASM International, 10, 4, 340 (1989).
17. R. F. Brebrik and R. S. Allgaier, “Composition Limits of Stability of PbTe,” J. Chem. Phys., 32, 1826 (1960).
18. Q. Y. Zhang and X. B. Lei, “Progress of Research on Bulk Thermoelectric Material PbTe in Foreign Countries,” Journal of Xihua University (Natural Science), 31, 3, 81 (2012).
19. J. R. Sootsman, H. Kong, C. Uher, J. J. D’Angelo, C. I. Wu, T. P. Hogan, T. Caillat, and M. G. Kanatzidis, “Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring,” Angew. Chem., 120, 8746 (2008).
20. P. F. P. Poudeu, A. Guéguen, C. I. Wu,T. Hogan and M. G. Kanatzidis, “High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric Materials,” Chem. Mater., 22, 1046 (2010).
21. Y. Pei , J. Lensch-Falk , E. S. Toberer , D. L. Medlin and G. J. Snyder, “High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping,” Adv. Funct. Mater., 21, 241–249 (2011)
22. C. H. Kuo, M. S. Jeng, J. R. Ku, S. K. Wu, Y. W. Chou, and C. S. Hwang, “p-Type PbTe Thermoelectric Bulk Materials with Nanograins Fabricated by Attrition Milling and Spark Plasma Sintering,” J. Electron. Mater., 38, 9, 1956 (2009).
23. C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, New York (2005).
24. P. K. Rawat, B. Paul, and P. Banerji, “Thermoelectric properties of PbSe0.5Te0.5: x (PbI2) with endotaxial nanostructures: a promising n-type thermoelectric material,” Nanotechnology, 24, 215401 (2013).
25. J. P. Heremans, C. M. Thrush, and D. T. Morelli, “Thermopower enhancement in lead telluride nanostructures,” Phys. Rev. B, 70, 115334 (2004).
26. J. P. Heremans, C. M. Thrush, and D. T. Morelli, “Thermopower enhancement in PbTe with Pb precipitates,” J. Appl. Phys., 98, 063703 (2005).
27. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature, 473, 66 (2011).
28. Y. Pei, A. D. LaLonde, N. A. Heinz and G. J. Snyder, “High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe,” Adv. Energy Mater., 2, 670 (2012).
29. M. Ohta, K. Biswas, S. H. Lo, J. He, D. Y. Chung, V. P. Dravid and M. G. Kanatzidis, “Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p -type PbTe Doped with Na2Te,” Adv. Energy Mater., 2, 1117 (2012).
30. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science, 321, 554 (2008).
31. M. Orihashia, Y. Nodab, L. D. Chen, T. Goto, T. Hirai, “Effect of tin content on thermoelectric properties of p-type lead tin telluride,” J. Phys. and Chem. of Solids, 61, 919 (2000).
32. R. J. Cava, H. Ji, M. K. Fuccillo, Q. D. Gibson and Y. S. Hor, “Crystal Structure and Chemistry of Topological Insulators,” J. Mater. Chem. C, 1, 3176 (2013).
33. M. Schenk, H. Berger, A. Klimakow, M. Müilberg, M. Wienecke, “Nonstoichiometry and Point Defects in PbTe,” Cryst. Res. Technol., 23, 1, 77 (1988).
34. T. Su, X. Jia, H. Ma, J. Guo, Y. Jiang, N. Dong, L. Deng, X. Zhao, T. Zhu, C.Wei, “Thermoelectric properties of nonstoichiometric PbTe prepared by HPHT,” J. Alloys and Compounds 468, 410–413 (2009).