| 研究生: |
李清宇 Lee, Ching-Yu |
|---|---|
| 論文名稱: |
氧化鈣觸媒在轉酯化反應中的溶出行為研究 A study on leaching behavior of calcium oxide catalyst in transesterification reaction |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 生質柴油 、轉酯化反應 、氧化鈣 、EBSD 、溶出行為 |
| 外文關鍵詞: | Biodiesel, transesterification, calcium oxide, EBSD, leaching |
| 相關次數: | 點閱:47 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技逐漸發展,人們對於能源的需求也日益增加,其中石化燃料的大量使用,造成了能源逐漸缺少,以及環境汙染、氣候變遷等問題。因此,這促使各國積極開發乾淨、可再生的替代燃料,在這之中以生質柴油最受矚目,因為此為一種無毒、可生物分解、可再生的替代能源。
生質柴油一般是透過動、植物油脂經轉酯化反應合成,並在觸媒的催化下以加速反應進行,其中因非均相鹼性觸媒具有可重複使用、易於分離等特點而被研究者廣泛使用。然而,在實際反應中,非均相觸媒會遭遇到溶出問題,使得觸媒重複使用性不佳,因此本實驗將著重在研究溶出行為,希望能找出抑制觸媒溶出的關鍵因素。
本研究以廣泛使用的氧化鈣觸媒做為研究對象,採用固態燒結法製備氧化鈣塊材以供觀察,並使用甲醇、甲醇甘油混合液以模擬在轉酯化反應前、後期的溶出行為。研究中使用SEM/EBSD技術,以得到表面結晶取向分布與溶出形貌的關聯性,相較於以往利用單晶試片觀察表面變化,此研究提供了較為簡便,且能觀察到許多高指數晶面反應行為的實驗方式。
研究結果顯示,表面溶出行為與表面結晶取向有很大的關聯性。在轉酯化反應前期 (甲醇溶液),接近{001}方向的晶面會產生變化而導致溶出,而接近{111}方向之晶面則因無明顯變化,代表較具有抗溶出特性;轉酯化反應後期 (甲醇甘油溶液),也可觀察到同樣的溶出趨勢,說明了在整體轉酯化反應中,相較於其餘晶面,接近{111}方向之晶面最為穩定。
Biodiesel is a non-toxic, biodegradable, renewable energy resource which is produced by transesterification of vegetable oils or animal fats with methanol. To facilitate transesterification reaction, different kinds of heterogeneous base catalysts have been developed. However, these catalysts were deactivated after several reaction runs due to severe catalyst leaching. To cope with this issue, we investigated the leaching behavior on calcium oxide catalyst surface for better understanding in leaching phenomenon. In this study, SEM/EBSD technique was used to correlate the surface leaching behavior with surface crystal orientation, and methanol and methanol-glycerol solution were used to simulate the early/final stage of transesterification environment respectively. The results showed that leaching behavior were strongly dependent on the surface crystal orientation. In the transesterification reaction, the near {001} orientations are the most reactive surfaces which can cause catalyst leaching, and in contrary the near {111} orientations are the most stable surfaces and showed a negligible leaching into the solution.
1. 馬佳琪, 以鍶離子改質羥基磷灰石作為生質柴油轉酯化反應之鹼性催化劑, in 材料科學及工程學系. 2017, 國立成功大學: 台南市. p. 56.
2. 羅千祥, 研究氧化鍶異質催化轉酯化反應中皂化現象之抑制方法, in 材料科學及工程學系. 2016, 國立成功大學: 台南市. p. 72.
3. Weiyang, Z. and B.D.G. B., Phase distributions of alcohol, glycerol, and catalyst in the transesterification of soybean oil. Journal of the American Oil Chemists' Society, 2006. 83(12): p. 1047-1052.
4. Liu, X., et al., Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 2008. 87(2): p. 216-221.
5. Kouzu, M., et al., Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 2008. 87(12): p. 2798-2806.
6. Kouzu, M., et al., Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 2009. 355(1): p. 94-99.
7. Hacquart, R. and J. Jupille, Hydrated MgO smoke crystals from cubes to octahedra. Chemical Physics Letters, 2007. 439(1): p. 91-94.
8. Granados, M.L., et al., Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO. Applied Catalysis B: Environmental, 2009. 89(1): p. 265-272.
9. Kralova, I. and J. Sjöblom, Biofuels–Renewable Energy Sources: A Review. Journal of Dispersion Science and Technology, 2010. 31(3): p. 409-425.
10. Low Carbon or No Carbon. 2008; Available from: http://www.uptownoil.co.uk/co2_biodiesel.html.
11. Alleman, T.L., et al., Biodiesel Handling and Use Guide (Fifth Edition). 2016: ; National Renewable Energy Lab. (NREL), Golden, CO (United States). Medium: ED; Size: 3.6 MB.
12. Lotero, E., et al., Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, 2005. 44(14): p. 5353-5363.
13. History of Biodiesel. 2008; Available from: http://www.mybiodiesel.com/biodiesel-history.php.
14. Karmakar, A., S. Karmakar, and S. Mukherjee, Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 2010. 101(19): p. 7201-7210.
15. Bhuiya, M.M.K., et al., Second Generation Biodiesel: Potential Alternative to-edible Oil-derived Biodiesel. Energy Procedia, 2014. 61: p. 1969-1972.
16. 陳文姿. 廢食用油變潔淨能源 環署推100%生質柴油. 2015; Available from: http://e-info.org.tw/node/108704.
17. Tyson, K.S., et al., Biodiesel Handling and Use Guidelines. 2006: U.S. Department of Energy, Energy Efficiency and Renewable Energy.
18. Chhetri, A., K. Watts, and M. Islam, Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 2008. 1(1): p. 3-18.
19. Ma, F. and M.A. Hanna, Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresource Technology, 1999. 70(1): p. 1-15.
20. Adams, C., et al., Investigation of soybean oil as a diesel fuel extender: Endurance tests. Journal of the American Oil Chemists’ Society, 1983. 60(8): p. 1574-1579.
21. Mariusz, Z., et al., Diesel engine evaluation of a nonionic sunflower oil‐aqueous ethanol microemulsion. Journal of the American Oil Chemists' Society, 1984. 61(10): p. 1620-1626.
22. da Silva, G.P., M. Mack, and J. Contiero, Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 2009. 27(1): p. 30-39.
23. Sanli, H. and M. Canakci, Effects of Different Alcohol and Catalyst Usage on Biodiesel Production from Different Vegetable Oils. Energy & Fuels, 2008. 22(4): p. 2713-2719.
24. Felizardo, P., et al., Production of biodiesel from waste frying oils. Waste Management, 2006. 26(5): p. 487-494.
25. Atadashi, I.M., et al., The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 2013. 19(1): p. 14-26.
26. Lam, M.K., K.T. Lee, and A.R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 2010. 28(4): p. 500-518.
27. Kulkarni, M.G. and A.K. Dalai, Waste Cooking OilAn Economical Source for Biodiesel: A Review. Industrial & Engineering Chemistry Research, 2006. 45(9): p. 2901-2913.
28. Jacobson, K., et al., Solid acid catalyzed biodiesel production from waste cooking oil. Applied Catalysis B: Environmental, 2008. 85(1): p. 86-91.
29. Canakci, M. and J. Van Gerpen, A Pilot Plant to Produce Biodiesel from High Free Fatty Acid Feedstocks. 2003. 46.
30. Wang, Y., et al., Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 2006. 252(1): p. 107-112.
31. Pereira, C.O., et al., SnSO4as catalyst for simultaneous transesterification and esterification of acid soybean oil. Journal of the Brazilian Chemical Society, 2014. 25(12): p. 2409-2416.
32. Leung, D.Y.C., X. Wu, and M.K.H. Leung, A review on biodiesel production using catalyzed transesterification. Applied Energy, 2010. 87(4): p. 1083-1095.
33. Ramos, M.J., et al., Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. Applied Catalysis A: General, 2008. 346(1): p. 79-85.
34. Navajas, A., et al., Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel, 2018. 211: p. 173-181.
35. Demirbas, A., Biodiesel from Vegetable Oils with MgO Catalytic Transesterification in Supercritical Methanol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2008. 30(17): p. 1645-1651.
36. Mootabadi, H., et al., Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel, 2010. 89(8): p. 1818-1825.
37. Liu, X., et al., Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications, 2007. 8(7): p. 1107-1111.
38. Han, L., et al., Continuous Waste Cooking Oil Transesterification with Microwave Heating and Strontium Oxide Catalyst. Chemical Engineering & Technology, 2018. 41(1): p. 192-198.
39. Zabeti, M., W.M.A. Wan Daud, and M.K. Aroua, Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 2009. 90(6): p. 770-777.
40. Sirisomboonchai, S., et al., Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conversion and Management, 2015. 95: p. 242-247.
41. Chouhan, A.P.S. and A.K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4378-4399.
42. Jitputti, J., et al., Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 2006. 116(1): p. 61-66.
43. Lien, Y.-S., L.-S. Hsieh, and J.C.S. Wu, Biodiesel Synthesis by Simultaneous Esterification and Transesterification Using Oleophilic Acid Catalyst. Industrial & Engineering Chemistry Research, 2010. 49(5): p. 2118-2121.
44. Kulkarni, M.G., et al., Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chemistry, 2006. 8(12): p. 1056-1062.
45. Sadaba, I., et al., Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions. Green Chemistry, 2015. 17(8): p. 4133-4145.
46. de Leeuw, N.H., G.W. Watson, and S.C. Parker, Atomistic Simulation of the Effect of Dissociative Adsorption of Water on the Surface Structure and Stability of Calcium and Magnesium Oxide. The Journal of Physical Chemistry, 1995. 99(47): p. 17219-17225.
47. Cutler, I.B., Calcium oxide refractory and process of producing same. 1962, Google Patents.
48. Mamykin, P.S. and S.G. Zlatkin, Calcium oxide crucibles. Refractories, 1962. 3(7): p. 288-290.
49. Urasaki, K., et al., Effect of the kinds of alcohols on the structure and stability of calcium oxide catalyst in triolein transesterification reaction. Applied Catalysis A: General, 2012. 411-412: p. 44-50.
50. Kouzu, M., et al., Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General, 2010. 390(1): p. 11-18.