| 研究生: |
陳韋伶 Chen, Wei-Ling |
|---|---|
| 論文名稱: |
以水災風險管理觀點評估土地使用調洪策略之研究--以鹽水溪流域為例 Assessing Land Use Flood Control Measures Based on Flood Risk Management Approach--A Case of Yanshuei River Basin, Taiwan |
| 指導教授: |
孔憲法
Kung, Shiann-Far |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 水災風險管理 、土地利用變遷 、土地使用調洪策略 、馬可夫鏈 、多層感知類神經網路 、地文性淹水模式 |
| 外文關鍵詞: | Flood risk management, Land use change, Land use flood control measures, Markov chain, Multi layer perception neural network, Physiographic inundation model |
| 相關次數: | 點閱:122 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水災為台灣發生最頻繁的災害之一,近年極端氣候及土地使用變遷更使得災害規模增大,造成重大損失。為因應此災害發生強度與頻率日漸增加的趨勢,目前國內外相關政策與研究均傾向以災害風險管理的角度,藉由風險的評估與調控,研擬較具彈性的防洪策略。在水災風險管理中,土地使用減洪空間策略可透過改變洪水形成的條件,及洪水性質,讓災害發生的機會與損失下降,且帶來的實質效益最高。因此若能透過土地使用調洪策略進行空間規劃,將可對水災風險的暴露量進行控制,達到減災的效果。然而,過去國內探討土地使用減洪之相關研究,大多傾向探討兩者相互影響之關係,或就當前政策、法令面作質化檢討,少有融合災害風險調適的概念,並針對實質土地使用減災策略進行量化模擬。
有鑑於此,本研究擬由文獻回顧及荷蘭萊茵河-默茲河三角洲與日本鶴見川流域案例分析整理歸納常用之土地使用調洪策略,並應用馬可夫鏈及多層感知類神經網路,模擬鹽水溪流域2007至2019年不同土地使用空間策略引導下,土地利用之發展情形。透過模擬工具了解策略施行後的土地利用發展型態,最後利用地文性淹水模式從各情境之洪水淹溢範圍和深度改變,以及水災暴露量、災害損失三方面評估整體風險管理結果,分析水災風險管理概念應用在土地使用調洪決策之有效性,建立一結合量化評估架構,提供未來規劃者作為參考。
Flood is one of the most frequently occurred natural disasters in Taiwan and has resulted in serious damage over the last decade due to extreme weather and land use change. In order to alleviate the rise of flood risk, related strategies have been proposed from the risk management points of view which try to set up more flexible flood prevention methods by risk evaluation and adjustment. Land use flood control measures are some of the most important methods which attempt to change the characteristics of flood by altering the conditions of flood occurrence and thus decrease the damage. If we control the exposure of flood risk by spatial planning of land use, then the flood risk will reduce. However, studies in the past on flood control measures were tend to describe the relationship between land use and flood or discuss it in the aspects of current strategies and restrictions. There are relatively few studies which have considered the concepts of flood risk management or explored the physical side of land use based flood mitigation planning.
Therefore, the objective of this paper is first to summarize the related land use flood control measures for risk mitigation by literature review and case study. Second, we apply Markov chain and multi-layer perception neural network to develop possible strategies scenarios in Yanshuei river basin from 2007 to 2019. Strategies are implemented in the simulation processes in order to understand the future land-use patterns resulted from the strategies. Also, Analysis based on the concept of flood risk management is conducted by inundation modeling and flood-damage calculating for evaluating the influence of measures on flood exposure and possible flood damage. As a result, the effectiveness of practicing land use flood control measures based on concepts of flood risk management could be quantitatively understood. The framework and simulation results of this paper provide useful future reference for urban planners.
(一) 外文文獻
1. Associated Programme on Flood Management (2007), APFM Technical Document No. 6- Formulating A Basin Flood Management Plan- A Tool for Integrated Flood Management, WMO/GWP Associated Programme on Flood Management.
2. Associated Programme on Flood Management (2007), APFM Technical Document No. 12- The Role of Land-Use Planning in Flood Management- A Tool for Integrated Flood Management, WMO/GWP Associated Programme on Flood Management.
3. Atkinson, P. M. and Tatnall, A. R. L. (1997), Neural Networks in Remote Sensing, International Journal of Remote Sensing, 18(4): 699-709.
4. Baker, W.L. (1989), A Review of Models of Landscape Change. Landscape Ecology, 2(2): 111-133.
5. Beighley, R. E., Moglen, G. E. (2003), Adjusting Measured Peak Discharges from an Urbanizing Watershed to Reflect a Stationary Land Use Signal, Water Resources Research, 39 (4): WES4-1–WES4-11.
6. Beighley, R. E., Melack, M., Dunne, T. (2003), Impacts of California’s Climatic Regimes and Coastal Land Use Change on Streamflow Characteristics, Journal of the American Water Resources Association December, 39 (6): 1419–1433.
7. Bishop, C. M. (1995), Neural Networks for Pattern Recognition, Oxford University Press, Oxford, pp.482.
8. Böhm, H. R., Heiland, P., Dapp, K. and Haupter, B. (2002), Spatial Planning and Supporting Instruments for Preventive Flood Management. Final reportof IRMA-SPONGE Project 5, Germany: Darmstadt University of Technology.
9. Böhm, H. R., Haupter, B., Heiland, P. and Dapp, K. (2004), Implementation of Flood Risk Management Measures into Spatial Plans and Policies, River Research and Applications, 20: 255-267
10. Brown, D. G., Lusch, D. P. and Duda, K. A. (1998), Supervised Classification of Glaciated Landscape Types Using Digital Elevation Data. Geomorphology, 21(3-4): 233-250.
11. Burby, R. J., Cigler, B. A., French, S. P., Kaiser, E. J., Kartez, J., Roenigk, D., Weist, D. and Whittington, D. (1991), Sharing Environment Risks: How to Control Governments' Loss in Natural Disaster, Colorado: Westview Press, Boulder.
12. Burby, R. J. (1998), Cooperating with Nature– Confronting Natural Hazards with Land-Use Planning for Sustainable Communities, Washington D. C.: Joseph Henry Press.
13. Burby, R. J. (2000), "Land-use Planning for Flood Hazard Reduction: The United States Experience" in Parker, D.J. (ed.) Floods Vol. 2, London: Routledge Hazards and Disasters Series.
14. Chang, H., Franczyk, J. and Kim, C. (2009), What Is Responsible for Increasing Flood Risks? The Case of Gangwon Province, Korea, Natural Hazards, 48:339–354.
15. Choi, W. and Deal, B. M. (2008), Assessing Hydrological Impact of Potential Land Use Change through Hydrological and Land Use Change Modeling for the Kishwaukee River Basin (USA), Journal of Environmental Management, 88(4): 1119–1130.
16. Crichton, D. (2001), The Implications of Climate Change for the Insurance Industry, Watford: Building Research Establishment.
17. Klijn, F., Buuren, M. and Rooij, S. A. M. (2004), Flood-risk Management Strategies for an Uncertain Future: Living with Rhine River Floods in The Netherlands? , Royal Swedish Academy of Sciences, 33(3): 141-147.
18. Godschalk, D. R., Beatley, T., Berke, P., Brower, D. J., Kaiser, E. J., Bohl, C. C. and Goebel, R. M. (1999), Natural Hazard Mitigation: Recasting Disaster Policy and Planning, Washington, D.C.: Island Press.
19. Gouldby, B. and Samuels, P. (2005), Language of Risk: Project Definitions, GOCE-CT-2004-505420, Wallingford, UK: FLOODsite Consortium Press.
20. Hardmeyer, K. and Spencer, M. A. (2007), Using Risk-Based Analysis and Geographic Information Systems to Assess Flooding Problems in an Urban Watershed in Rhode Island, Environment Management, 39: 563-574.
21. Hooijer, A., Klijn, F., Pedroli, G. B. M. and Os, A. G. V. (2004), Towards Sustainable Flood Risk Management in the Rhine and Meuse River Basins: Synopsis of the Findings of IRMA-SPONGE, River Research and Applications, 20: 343-357.
22. HR Wallingford Ltd. (2002) Risk, Performance and Uncertainty in Flood and Coastal Defence: A review, HR Wallingford Report SR 587, Environment Agency R&D Technical Report FD2302/TR1, DEFRA, UK.
23. Internationale Kommission zum Schutz des Rheins (2001), Atlas 2001, http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Rhein-Atlas/german/german_text.pdf
24. International Strategy for Disaster Reduction (2004), Living with Risk A Global Review of Disaster Reduction Initiatives 2004 Version, http://www.unisdr.org/eng/about_isdr/bd-lwr-2004-eng.htm (Sep. 15, 2009)
25. Kamusoko, C., Aniya, M., Adi B. and Manjoro, M. (2009), Rural Sustainability under Threat in Zimbabwe- Simulation of Future Land Use/Cover Changes in the Bindura District based on the Markov-cellular Automata Model, Applied Geography, 29: 435-447.
26. Khoi, D. D. and Murayama, Y. (2010), Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam, Remote Sensing, 2, 1249-1272.
27. Kuniyoshi, T. (2002), Flood Management in Japan—From Rivers to Basins, Water International, 27 (1), 20-26.
28. Langhammer, J. and Vilímek, V. (2008), Landscape Changes as a Factor Affecting the Course and Consequences of Extreme Floods in the Otava River Basin, Czech Republic, Environment Monit Assessment,144: 53-66.
29. Liaw, C. H., Cheng, M. S. and Tsai, Y. L. (2000), Low-impact Development: An Innovative Alternative Approach to Stormwater Management, Journal of Marine Science and Technology, 8 (1): 41-49.
30. Lin, Y. P., Verburg, P. H., Chang, C. R., Chen, H. Y. and Chen, M. H. (2009), Developing and Comparing Optimal and Empirical Land-use Models for the Development of an Urbanized Watershed Forest in Taiwan, Landscape and Urban Planning, 92: 242–254
31. Liu, W. G. and Seto, K. C. (2008), Using the ART-MMAP Neural Network to Predict Urban Growth: a Spatio-temporal Data Mining Approach, Environment and Planning B, 35(2): 296-317.
32. Mas, J. F. (2004), Mapping Land Use/Cover in a Tropical Coastal Area Using Satellite Sensor Data, GIS and Artificial Neural Networks, Estuarine, Coastal and Shelf Science, (59): 219-230
33. McColl, C. and Aggett, G. (2007), Land-use Forecasting and Hydrologic Model Integration for Improved Land-use Decision Support, Journal of Environmental Management, 84: 494–512.
34. Michalski, F., Peres, C. A. and Lake, I. R. (2008), Deforestation Dynamics in a Fragmented Region of Southern Amazonia: Evaluation and Future Scenarios, Environmental Conservation, 35 (2): 93–103.
35. Mileti, D. (1999), Disasters by Design: A Reassessment of Natural Hazards in the United States, Washtoning, D. C.: Joseph Henry Press.
36. Minties, J. L. and Stromberg, P. A. (1982), Seismic Safety at the Local Level: Does Planning Make a Difference? In Hart, E. W., Sue E. H., and Sandra, S. S., ed. Proceedings Conference on Earthquake Hazard in the Eastern San Francisco Bay Area, Division of Mines and Geology, California Department of Conservation.
37. Muller, M.R. and Middleton, J. (1994), A Markov Model of Land-use Change Dynamics in the Niagara Region, Ontario, Canada., Landscape Ecology, 9 (2): 151-157.
38. Nakao, T. and Tanimoto, K. (1997), Comprehensive Flood Control Measures in the Tsurumi River Basin in Japan', Water International, 22(4): 252-258.
39. Negga, H. E. (2007), Predictive Modelling of Amphibian Distribution Using Ecological Survey Data: a case study of Central Portugal, Master Thesis of International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.
40. Pijanowski, B. C., Brown, D. G., Shellito, B. A. and Manik, G. A. (2006), Using Neural Networks and GIS to Forecast Land Use Changes: A Land Transformation Model, Computers, Environment and Urban Systems, 26: 553–575.
41. Rees, W. G. (2008). Comparing the Spatial Content of Thematic Maps. International Journal of Remote Sensing, 29(13): 3833-3844.
42. Rumelhart, D., Hinton, G. and Williams, R. (1986), Learning Internal Representations by Error Propagation, In D. E. Rumelhart, & J. L. McClelland (Eds.), Parallel distributed processing: explorations in the microstructures of cognition (Vol. 1), Cambridge: MIT Press, pp. 318–362.
43. Shen, Z., Kawakami, M. and Kawamura, I. (2009), Geosimulation Model using Geographic Automata for Simulating Land-use Patterns in Urban Partitions, Environment and Planning B: Planning and Design, 36: 802-823.
44. Sheng, J. and Wilson, J. P. (2009), Watershed Urbanization and Changing Flood Behavior Across the Los Angeles Metropolitan Region, Natural Hazards, 48: 41-57.
45. Shiu, C. J., Liu, S. C. and Chen J. P. (2009), Diurnally asymmetric trends of temperature, humidity and precipitation in Taiwan, Journal of Climate, 22: 5630-5649.
46. Sigrun, R., Markus, H., Armin, P. and Klaus, C. E. (2006), Room for Rivers: An Integrative Search Strategy for Floodplain Restoration, Landscape and Urban Planning, 78: 50-70.
47. Siles, N. J. S. (2009), Spatial Modeling and Prediction of Tropical Forest Conversion in the Isiboro Secure National Park and Indigenous Territory (TIPNIS), Bolivia, Master Thesis of International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.
48. White, G. F., Kates, R. W. and Burton, I. (1986), Geography resources and environment; v.1. Selected writings of Gilbert F. Whit, Chicago, IL: University of Chicago.
49. Woodall, D. L. and Lund, J. R. (2009), Dutch Flood Policy Innovations for California, Journal of Contemporary Water Research & Education, 141: 45-59.
50. United Nations (2004), Guidelines for Reducing Flood Losses, http://www.unisdr.org.
51. United Nations Educational, Scientific and Cultural Organization (UNESCO), IWRM Guidelines at River Basin Level-Part 2-2: The Guidelines for Flood Management, http://www.unesco.org/water/news/pdf/Part_2-2_Guidelines_for_Flood_Management.pdf
52. Inomata, Jun, Multiple Use of Flood Prevention Facilities in Japan, http://www.mlit.go.jp/river/trash_box/paper/pdf_english/19.pdf
53. 鶴見川流域水協議会 (2007), 鶴見川水系河川整備計画, http://www.ktr.mlit.go.jp/keihin/tsurumi/project/plan/02/pdf/text.pdf
54. 鶴見川流域水協議会 (2007), 鶴見川流域水害対策計画, http://www.ktr.mlit.go.jp/keihin/tsurumi/project/plan/03/pdf/text.pdf
55. 鶴見川流域水協議会 (2009), 平成19年度鶴見川流域水害対策計画によるモニタリングの公表, http://www.ktr.mlit.go.jp/keihin/tsurumi/project/plan/05/pdf/0715.pdf
(二) 中文文獻
1. 丁志堅(1997),運用馬可夫鏈模式度量土地利用變遷之研究,「國立台灣大學地理學研究所碩士論文」。
2. 中央災害應變中心(2009),「莫拉克颱風災害應變處置報告-第1~74報」,台北市:內政部消防局。
3. 王進德(2007),「類神經網路與模糊控制理論入門與應用」,台北市:全華。
4. 王艷艷、梅青、程曉陶(2009)流域洪水風險情境分析技術簡介及其應用,「水利水電科技進展」,第29卷,第2期。
5. 方創琳、喬標、鮑超(2008),「城市化過程與生態環境效應」,北京:科學出版社。
6. 孔憲法、楊逸萍、江中愷(2009),易淹水地區地景規劃模式之探討─以南部科學工業園區為例,「第13屆國土規劃論壇學術研討會論文集論文集」,台南市。
7. 內政部消防局(2009),「消防白皮書」,台北市:內政部消防局。
8. 吳瑞賢、林松青、蘇文瑞、洪明瑞、廖偉民、廖偉信、張哲豪、韋家振(2006),「天然災害防治導論」,台北市:全華科技圖書股份有限公司。
9. 吳杰穎、鄭春發、鄭國泰(2006),考量見災觀點之都市計劃通盤檢討防災規劃:以淡海新市鎮特定區為例,「環境與世界」,第14期,第71-92頁。
10. 吳杰穎、邵珮君、林文苑、柯于璋、洪鴻智、陳天健、陳亮全、黃智彥、詹士樑、薩支平(2007),「災害管理學辭典」,台北市:五南圖書。
11. 吳杰穎(2009),非結構式減災措施運用於空間規劃與管理之研究,「第13屆國土規劃論壇學術研討會論文集論文集」,台南市。
12. 吳振發、林裕彬(2006),汐止市土地利用時空間變遷模式,「都市與計畫」,33(3):231-259。
13. 李鴻源(1998),「台灣之水害防治」,研考報導季刊,第43期,第16-26頁。
14. 李宗霖、張光宏(2008),類神經網路於橋墩周圍沖刷深度預測之研究,「2008營建與物業管理產官學研討會論文集」,台南市。
15. 京華工程顧問公司(2009),「南部地區河川污染整治推動、輔導及評析計畫」,台北市:行政院環保署。
16. 邱志洲、謝邦昌(2000),「類神經網路分析」,台北市:曉原出版社。
17. 林承緯(2005),台灣都市蔓延發展型態之研究:以台灣四大都會區為例,「國立成功大學都市計劃學系碩士論文」。
18. 林裕彬、林允斌(2007),「台北都會區土地使用變遷模式之研究--子計畫一:土地利用變遷與政策之互動影響分析-空間統計模式(II)」,行政院國家科學委員會專題研究計劃成果報告(NSC 95-2621-Z-002-016),國立臺灣大學生物環境系統工程學系暨研究所。
19. 金菊良、魏一鳴、傅強、丁晶(2002),洪水災害風險管理的理論框架探討,「水利水電技術」,33:40-42。
20. 周成虎(1993),「洪水災害評估信息系統」,北京:中國科學技術出版社。
21. 胡堯智(2006),都市土地使用變遷模擬方法之研究-以區域空間自相關、鄰近特徵為例,「逢甲大學環境資訊科技研究所碩士班論文」。
22. 梁鳳如(2005),台南科學工業園區發展及其與周邊地方發展關連之研究,「國立高雄師範大學地理學系碩士論文」。
23. 郭俊麟(2001),科學園區與地方發展:台南科學工業園區量產前台南地區之區域變遷,「國立臺灣大學地理環境資源學研究所碩士論文」。
24. 郭俊超(2003),鹽水溪上游土地改變影響及非工程調洪方法評估,「國立成功大學水利及海洋工程研究所碩士論文」。
25. 陳亮全、陳海立(2002),易致災都市空間發展之探討:以臺北盆地都市水災形成為例,「都市與計劃」,第34卷,第3期,第293-315頁。
26. 陳增壽(2003),「防洪示範區淹水境況模擬與決策支援系統之研究(三)子計畫四:鹽水溪流域洪災損害評估模式與資料庫之研究」,行政院國家科學委會補助專題研究計畫成果報告(NSC 9102625-Z-002-007),國立台灣大學生物環境系統工程學系。
27. 張政亮、張瑞津(2006),運用馬可夫鏈模型與細胞自動機理論模擬植生復育之研究:以九九峰地區為例,「地理研究」,第45期,第123-142頁。
28. 許銘熙、游保杉、謝龍生、張駿暉、傅金城(2006),雲嘉南易淹水地區之治理策略初探,「水資源管理會刊」,第8卷,第1期,第17-23頁。
29. 黃書禮,蔡靜如(2000),台北盆地土地利用變遷趨勢之研究,「都市與計劃」,第27卷,第1期,第1-22頁。
30. 黃志偉(2003),平原地區排水路集水區之研究,「國立成功大學水利及海洋工程研究所碩士論文」。
31. 萬慶、魏一鳴、陳德清(1999),「洪水災害系統分析與評估」,北京:科學出版社。
32. 鄭祈全、吳治達、莊永忠(2007),土地利用變遷與氣候變遷對集水區流量模擬影響之研究-以林試所蓮華池試驗林之蛟龍溪集水區為例,「台灣林業科學」,第22卷,第4期,第483-95頁。
33. 鄒克萬、張耀麟(2004),都市土地使用變遷空間動態模型之研究,「地理學報」,第35期,第35-51頁。
34. 鄒克萬、張益三、杜建宏(2006),建物震害毀損度預測模式之研究-倒傳遞類神經網路法之應用,「住宅學報」,第15卷,第1期,第21- 41頁
35. 鄒克萬、黃書偉(2007),都市土地利用變遷對自然環境衝擊之空間影響分析,「地理學報」,第48期,第1-18頁。
36. 蔡瑞煌(1995),「類神經網路概論」,台北市:三民書局。
37. 蔡依純(2002),從土地使用規劃進行防洪管理策略之研究-以基隆河上游地區為例,「國立台北科技大學建築與都市設計研究所碩士論文」。
38. 劉少華(2003),汐止水患影響都市發展與防洪政策之系統動力學研究,「國立中山大學公共事務管理研究所碩士論文」。
39. 糠瑞林(2005),區域淹水災害風險評估及其未確定性分析,「國立臺灣大學生物環境系統工程學研究所碩士論文」。
40. 薩支平、鄧慰先、賴美如、葉森海(2000),「淹水潛勢資料在土地使用規劃與管理之初步應用研究」,台北市:內政部建築研究所。
41. 薩支平、陳亮全(2002),「都市洪災防治策略之整合型規劃研究(一)從災害管理層面探討都市洪災防治策略之研究」,台北市:內政部建築研究所。
(三) 網站資料
1. FLOODsite: International Flood Risk Analysis and Management Methodologies, http://www.floodsite.net/
2. International Strategy for Disaster Reduction, http://www.unisdr.org/
3. Environment Agency of England and Wales, http://www.environment-agency.gov.uk/
4. 英國DEFRA網站, http://www.defra.gov.uk/environ/fcd/policy/strategy.htm
5. 美國FEMA網站, http://www.fema.gov/
6. 內政部消防署網站, http://www.nfa.gov.tw/index.aspx
7. 經濟部水利署網站, http://www.wra.gov.tw/default.asp
8. 經濟部水利署第六河川局網站, http://www.wra06.gov.tw/default.asp
9. 中央氣象局網站, http://www.cwb.gov.tw/