| 研究生: |
黃婉渝 Huang, Wan-Yu |
|---|---|
| 論文名稱: |
熱力學計算輔助廢熱回收硝酸鹽相轉變材料設計 CALPHAD-assisted design of nitrate-based phase change materials for waste heat recycling |
| 指導教授: |
林士剛
Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 相變化材料 、融熔鹽 、熱力學計算 、Factsage熱力學計算軟體 、DSC 、Kissinger 分析 |
| 外文關鍵詞: | Phase change material, Molten salt, CALPHAD modeling, Kissinger method |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球人口膨脹及工業化發展,人類對能源的需求越來越高;在台灣,由於先天不蘊藏足夠的能源,根據109年經濟部能源局資料進口能源佔總供給量97.90%,使得能源問題在台灣更迫切的需要處理,再生能源的開發日漸受到重視,但由於再生能源的「間歇性」及「不可控制性」,因此儲能被視為未來能源科技的重點發展項目。而在能量轉換過程中絕大部份能源皆以「熱能」散失;為了有效利用能源,常藉由熱電轉換系統進行「削峰填谷」電力調節,但熱電轉換過程中熱源不穩定,使得轉換效率不佳,因此,本研究利用CALPHAD熱力學計算軟體Factsage設計適合融熔鹽相變化材料,透過計算固相線、液相線、潛熱變化、成本等條件,篩選出最佳的熔鹽組成,並利用DSC進行熱力學驗證,並以Kissinger方法進行動力學探討,再與常見商用相變化材料HITEC 比較,並且利用腐蝕測試探討長期使用下的容器相容性,預期研究成果能有效針對場域設計適合相變化材料並對在電力運用終能達到「削峰填谷」。
With the global population swelling and rising industrialization trends in developing countries, people's hunger for energy has reached to a higher level. Around 80% of global energy comes from fossil fuels which is high polluted and unrenewable. However, according to the reports, fossil fuels would be exhausted in 40 years. In Taiwan, the main power generation is also from fossil fuel. What's worse is that more than 97% of energy resources are imported, which leads to serious energy shortage in Taiwan. Therefore, the development of renewable energy is drawing more and more attention, but the “intermittent” and “uncontrollability” of renewable energy are still a problem, so how to “storage” energy becomes more and more important these days.
In the process of energy conversion, most of the energy is lost as "heat energy." In order to effectively use energy, the thermoelectric conversion system is often used to adjust the power of "peak-shaving and valley-filling". However, the heat source is unstable, which makes the conversion efficiency is low.
Therefore, with the aid of CALPHAD model, a customized phase change material is designed, which satisfied the criteria including semi-solid state while use, larger energy storage, and lower cost. DSC thermal analysis were conducted to validate the thermodynamic predictions. And Kissinger method for thermokinetic is also used to select. Furthermore, the isothermal dipping test was conducted for long-term use. With the combination of calculation and experiment, this study is expected to design a suitable phase change material for the field which has better performance than the commercial one.
[1] 中華民國經濟部能源局, “109 年能源供需概況.”
[2] T. Trainer, “Some problems in storing renewable energy,” Energy Policy, vol. 110, pp. 386–393, Nov.2017, doi: 10.1016/j.enpol.2017.07.061.
[3] G. Alva, Y. Lin, and G. Fang, “An overview of thermal energy storage systems,” Energy, vol. 144, pp. 341–378, Feb.2018, doi: 10.1016/J.ENERGY.2017.12.037.
[4] A .Sarı, H. Sarı, and A. Önal, “Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials,” Energy Convers. Manag., vol. 45, no. 3, pp. 365–376, Feb.2004, doi: 10.1016/S0196-8904(03)00154-7.
[5] M. Hartmann, “Heat Spreader Efficiency Improvements by Addition of Latent Heat Solution Materials,” Electronics Cooling. [Online]. Available: https://www.electronics-cooling.com/2019/10/heat-spreader-efficiency-improvements-by-addition-of-latent-heat-solution-materials/. [Accessed: 14-Jun-2021].
[6] S. A. A. Ghani, S. S. Jamari, and S. Z. Abidin, “Waste materials as the potential phase change material substitute in thermal energy storage system: a review,” Chem. Eng. Commun., pp. 1–21, 2020, doi: 10.1080/00986445.2020.1715960.
[7] C. Zhou and S. Wu, “Medium- and high-temperature latent heat thermal energy storage: Material database, system review, and corrosivity assessment,” Int. J. Energy Res., vol. 43, no. 2, pp. 621–661, Feb.2019, doi: 10.1002/er.4216.
[8] S. C. Costa, K. Mahkamov, M. Kenisarin, M. Ismail, K. Lynn, E. Halimic, and D. Mullen, “Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant,” J. Energy Resour. Technol., vol. 142, no. 3, Mar.2020, doi: 10.1115/1.4044557.
[9] “HITEC ® Heat Transfer Salt.”
[10] G. J. Janz, C. B. Allen, N. P. Bansal, R. M. Murphy, and R. P. T.Tomkins, “Physical properties data compilations relevant to energy storage :,” Gaithersburg, MD, 1979.
[11] H. Zamali and M. Jemal, “Diagrammes de phases des systemes binaires KNO3-CsNO3 et KNO3-NaNO3,” J. Therm. Anal., vol. 41, no. 5, pp. 1091–1099, 1994.
[12] J. W. Raade andD. Padowitz, “Development of Molten Salt Heat Transfer Fluid With Low Melting Point and High Thermal Stability,” J. Sol. Energy Eng. Asme, vol. 133, no. 3, p. 6, 2011, doi: 10.1115/1.4004243.
[13] R. W. Bradshaw and D. E. Meeker, “High-temperature stability of ternary nitrate molten salts for solar thermal energy systems,” Sol. Energy Mater., vol. 21, no. 1, pp. 51–60, Nov.1990, doi: 10.1016/0165-1633(90)90042-Y.
[14] T. Wang, D. Mantha, and R. G. Reddy, “Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 100, pp. 162–168, 2012.
[15] Z. K. Liu, “First-principles calculations and CALPHAD modeling of thermodynamics,” J. phase equilibria Diffus., vol. 30, no. 5, p. 517, 2009.
[16] Y. Zhong, H. Yang, and M. Wang, “Thermodynamic evaluation and optimization of LiNO3–KNO3–NaNO3 ternary system,” Calphad, vol. 71, p. 102202, 2020, doi: https://doi.org/10.1016/j.calphad.2020.102202.
[17] H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Anal. Chem., vol. 29, no. 11, pp. 1702–1706, Nov.1957, doi: 10.1021/ac60131a045.
[18] F. Kreith and J. F. Kreider, “Principles of solar engineering,” wdch, 1978.
[19] L. Cao, D. Su, Y. Tang, G. Fang, and F. Tang, “Properties evaluation and applications of thermal energystorage materials in buildings,” Renew. Sustain. Energy Rev., vol. 48, pp. 500–522, 2015, doi: https://doi.org/10.1016/j.rser.2015.04.041.
[20] A. Dinker and M. Agarwal, “Thermal conductivity enhancement of stearic acid using expanded graphite for low temperature thermal storage,” Int J Eng Sci Innov Technol, vol. 3, pp. 531–536, 2014.
[21] S. Gschwander, A. Lazaro, L. F. Cabeza, E. Günther, M. Fois, and J. Chui, “Development of a test standard for PCM and TCM characterization part 1: Characterization of phase change materials,” IEA Rep. A, vol. 2, 2011.
[22] A. Sharma and C. R. Chen, “Solar water heating system with phase change materials,” Int. Rev. Chem. Eng. (I. RE. CH. E.), vol. 1, no. 4, pp. 297–307, 2009.
[23] A. Abhat, “Low temperature latent heat thermal energy storage: Heat storage materials,” Sol. Energy, vol. 30, no. 4, pp. 313–332, Jan.1983, doi: 10.1016/0038-092X(83)90186-X.
[24] M. M. Kenisarin, “High-temperature phase change materials for thermal energy storage,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 955–970, 2010, doi: 10.1016/j.rser.2009.11.011.
[25] M. Liu, W. Saman, and F. Bruno, “Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2118–2132, May2012, doi: 10.1016/J.RSER.2012.01.020.
[26] J. Gasia, L. Miró, and L. F. Cabeza, “Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements,” Renew. Sustain. Energy Rev., vol. 75, pp. 1320–1338, Aug.2017, doi: 10.1016/J.RSER.2016.11.119.
[27] G. Wei, C. Xu, X. Ju, L. Xing, X. Du, and Y. Yang, “Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review,” Renew. Sustain. Energy Rev., vol. 81, pp. 1771–1786, Jan.2018, doi: 10.1016/J.RSER.2017.05.271.
[28] B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Appl. Therm. Eng., vol. 23, no. 3, pp. 251–283, Feb.2003, doi: 10.1016/S1359-4311(02)00192-8.
[29] T. Bauer, R. Tamme, M. Christ, and O. Öttinger, “PCM-Graphite Composites for High Temperature Thermal Energy Storage,” ECOSTOCK, 10th Int. Conf. Therm. Energy Storage, p. 19, 2006.
[30] D. B. Spencer, R. Mehrabian, and M. C. Flemings, “Rheological behavior of Sn-15 pct Pb in the crystallization range,” Metall. Mater. Trans. B, vol. 3, no. 7, pp. 1925–1932, 1972, doi: 10.1007/BF02642580.
[31] O. Greis, K. M. Bahamdan, and B. M. Uwais, “The phase diagram of the system NaNO3 KNO3 studied by differential scanning calorimetry,” Thermochim. Acta, vol. 86, pp. 343–350, 1985.
[32] C. M. Kramer and C. J. Wilson, “The phase diagram of NaNO3—KNO3,” Thermochim. Acta, vol. 42, no. 3, pp. 253–264, 1980.
[33] C. Robelin, P. Chartrand, and A. D. Pelton, “Thermodynamic evaluation and optimization of the (NaNO3+ KNO3+ Na2SO4+ K2SO4) system,” J. Chem. Thermodyn., vol. 83, pp. 12–26, 2015.
[34] X. Zhang, J. Tian, K. Xu, and Y.Gao, “Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system,” J. Phase Equilibria, vol. 24, no. 5, pp. 441–446, 2003.
[35] O. Beneš, R. J. M. Konings, S.Wurzer, M. Sierig, and A. Dockendorf, “A DSC study of the NaNO3–KNO3 system using an innovative encapsulation technique,” Thermochim. Acta, vol. 509, no. 1–2, pp. 62–66, 2010.
[36] R. Benages-Vilau, T. Calvet, M. A. Cuevas-Diarte, and H. A. J. Oonk, “The NaNO3–KNO3 phase diagram,” Phase Transitions, vol. 89, no. 1, pp. 1–20, 2016.
[37] C. Vallet, “Phase diagrams and thermodynamic properties of some molten nitrate mixtures,” J. Chem. Thermodyn., vol. 4, no. 1, pp. 105–114, 1972, doi: https://doi.org/10.1016/S0021-9614(72)80013-2.
[38] M. J. Maeso and J. Largo, “The phase diagrams of LiNO3-NaNO3 and LiNO3-KNO3: the behaviour of liquid mixtures,” Thermochim. Acta, vol. 223, pp. 145–156, 1993, doi: https://doi.org/10.1016/0040-6031(93)80129-X.
[39] N. Belaid Drira, H. Zamali, and M. Jemal, “Phase diagrams of the binary system LiNO3-NaNO3,” J. Therm. Anal., vol. 46, no. 5, pp. 1449–1458, 1996.
[40] N. M. Tsindrik and N. M. Sokolov, “Ternary reciprocal systems from lithium and sodium butyrates and nitrates,” ZHURNAL Obs. KHIMII, vol. 28, no. 7, pp. 1728–1733, 1958.
[41] R. P. Shisholina and P. I. Protsenko, “Sistema Li, Na-parallel-to-NO2, NO3,” ZHURNAL Neorg. KHIMII, vol. 8, no. 12, pp. 2741–2743, 1963.
[42] K. Xu, “Raman evidence for the congruently melting compound KLi(NO3)2 in the LiNO3–KNO3 system,” J. Phys. Chem. Solids, vol. 60, no. 1, pp. 5–11, 1999, doi: https://doi.org/10.1016/S0022-3697(98)00256-X.
[43] X. Zhang, K. Xu, and Y. Gao, “The phase diagram of LiNO3–KNO3,” Thermochim. Acta, vol. 385, no. 1–2, pp. 81–84, 2002.
[44] M. Bin-Mohammad, P. Cadusch, G. A. Brooks, and M. A. Rhamdhani, “The Binary Alkali Nitrate and Chloride Phase Diagrams: NaNO3-KNO3, LiNO3-NaNO3, LiNO3-KNO3, and NaCl-KCl,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 49, no. 6, pp. 3580–3593, Dec.2018, doi: 10.1007/s11663-018-1408-3.
[45] A. G. Bergman and K. Nogoev, “The CO (NH2) 2-LiNO3; K, Li, Na|| NO3; and K, NH4, Na|| NO3 Systems,” Russ. J. Inorg. Chem, vol. 9, no. 6, pp. 771–773, 1964.
[46] K. Coscia, S. Nelle, T. Elliott, S. Mohapatra, A. Oztekin, and S. Neti, “Thermophysical properties of LiNO3–NaNO3–KNO3 mixtures for use in concentrated solar power,” J. Sol. energy Eng., vol. 135, no. 3, 2013.
[47] A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault, “The modified quasichemical model I—binary solutions,” Metall. Mater. Trans. B, vol. 31, no. 4, pp. 651–659, 2000.
[48] M. Hillert, “The compound energy formalism,” J. Alloys Compd., vol. 320, no. 2, pp. 161–176, May2001, doi: 10.1016/S0925-8388(00)01481-X.
[49] D. Sergeev, E. Yazhenskikh, D. Kobertz, K. Hack, and M. Müller, “Phase equilibria in the reciprocal NaCl–KCl–NaNO3–KNO3 system,” Calphad, vol. 51, pp. 111–124, 2015.
[50] “FactSage Macro Processing Manual.” [Online]. Available: https://www.crct.polymtl.ca/fact/Macros.htm. [Accessed: 01-Jun-2021].
[51] H. E. Kissinger, “Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis,” 1956.
[52] D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, and I. Halow, “The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units,.” 01-Jan-1982.
[53] Y. Dessureault, J. Sangster, and A. D. Pelton, “Coupled Phase Diagram Thermodynamic Analysis of the 24 Binary Systems, A2CO3 AX and A2SO4 AX Where A=Li, Na, K and X=Cl, F, NO3, OH,” J. Phys. Chem. Ref. Data, vol. 19, no. 5, pp. 1149–1178, 1990, doi: 10.1063/1.555866.
[54] I. Barin, O. Knacke, and O. Kubaschewski, “Thermochemical properties of inorganic substances: supplement,” 2013.
[55] R. Speyer, “Thermal analysis of materials,” 1993.
[56] S. Bell, T. Steinberg, and G. Will, “Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power,” Renewable and Sustainable Energy Reviews, vol. 114. Elsevier Ltd, p. 109328, 01-Oct-2019, doi: 10.1016/j.rser.2019.109328.
[57] R. W. Bradshaw and S. H. Goods, “Corrosion of alloys and metals by molten nitrates,” Sandia National Lab.(SNL-CA), Livermore, CA (United States), 2001.
[58] S. H. Goods, R. W. Bradshaw, M. R. Prairie, and J. M. Chavez, “Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates,” Sandia National Lab.(SNL-CA), Livermore, CA (United States), 1994.
[59] O. Ahmed, “Corrosion behaviour of AISI 304 stainless steel in contact with eutectic salt for concentrated solar power plant applications,” 2013.
[60] T. Wang, D. Mantha, and R. Reddy, “The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System,” High Temp. Mater. Process., vol. 36, pp. 257–265, 2017.
[61] A. Conte, “Electrochemical study of copper in molten alkali nitrates,” Electrochim. Acta, vol. 11, no. 11, pp. 1579–1586, 1966, doi: https://doi.org/10.1016/0013-4686(66)80072-5.
校內:2026-08-25公開