| 研究生: |
黃國峰 Huang, Kuo-Feng |
|---|---|
| 論文名稱: |
矩形平板在水中振動附加質量之研究 Study on the Added Mass of a Rectangular Plate Vibrating in Water |
| 指導教授: |
吳重雄
Wu, Jong-Shyong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 矩形平板 、附加質量係數 |
| 外文關鍵詞: | finite element, natural frequency |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平板在水中振動的自然頻率與它在空氣中振動的自然頻率不同,此乃水的影響所致。平板在水中振動時,有一部分的水會隨著平板振盪,此現象有如平板攜帶著許多均勻分佈的集中質量一齊振動。本文利用現有文獻理論,自行設計電算程式,先求出水平矩形平板位於剛性牆孔洞中,單邊接觸水面時的附加質量係數 。由這些附加質量係數,吾人即可估算出矩形平板之流體附加質量(fluid -added mass) ,並將其平均分佈至整個矩形平板之有限元素模型相關元素的節點上,最後,利用有限元素法即可求出矩形平板的自然頻率及振態,並與現有的理論數據相比較。本文重點在探討位於剛性牆孔洞中,單邊與水面接觸的矩形平板,在四邊支撐情況、尺寸(面積) 大小及邊長比不同時,對自然頻率係數的影響。此外,對附加質量係數(added virtual mass incremental (AVMI) factor)和無因次附加質量(non-dimensionalized added virtual mass incremental (NAVMI) factor)間的關係,本文也加以研究。
Either in contact with or immersed in water, the natural frequencies of a plate change significantly due to presence of water. In this paper, a computer program that based on exiting theory was developed. By using the last computer program, the added mass coefficients for a horizontal rectangular plate placed in the aperture of an infinitely rigid plane wall in contact with fluid on one side were determined. Use of foregoing added mass coefficients, the fluid-induced added mass was estimated and replaced by a multitude of concentrated ones uniformly distributed at the associated nodes of the finite element model of the rectangular plate. Finally, based on the last finite element model, the lowest five natural frequencies and associated mode shapes were calculated and compared with the exiting theoretical results. The purpose of this paper is to studied in different of boundary condition, size and aspect ratio, a horizontal rectangular plate that the natural frequencies is effected placed in the aperture of an infinitely rigid plane wall in contact with fluid on one side. Furthermore, the relationships between added virtual mass incremental factor and non-dimensionalized added virtual mass incremental factor were also presented.
1.A. W. Leissa, “The Free Vibration of Rectangular Plates”, Journal of Sound and Vibration, Vol.31, No.3, pp257-293, 1973.
2.D. J. Gorman, Free Vibration Analysis of Rectangular Plates, New York: Elsevier North Holland, 1982.
3.M. K. Kwak and K. C. Kim, “Axisymmetric Vibration of Circular Plates in Contact with Fluid”, Journal of Sound and Vibration, Vol.146, No.3, pp381-389, 1991.
4.M. K. Kwak, “Vibration of Circular Plates in Contact with Water”, Transactions of the ASME, Vol.58, pp480-483, 1991.
5.Moon. K. Kwak, “Hydroelastic Vibration of Rectangular Plates”, Transactions of the ASME, Vol.63, pp110-115, 1996.
6.T. P. Chang, M. F. Liu, “On the Natural Frequency of a Rectangular Isotropic Plate in Contact with Fluid”, Journal of Sound and Vibration, Vol.236, No.3, pp.547-553, 2000.
7.Ding Zhou and Y. K. Cheung, “Vibration of Vertical Rectangular Plate in Contac with Water on One Side”, Earthquake Engineering and Structural Dynamics, Vol.29, pp.693-710, 2000.
8.Y. Yadykin* and V. Tenetov, D. Levin, “The added mass of a flexible plate oscillating in fluid”, Journal of Fluids and Structures, Vol.17, pp.115-123, 2003.
9.P. C. Chowdhury, “Fluid Finite Elements for Added Mass Calcula- tions”, International Shipbuilding Progress, Vol.19, pp302- 309, 1972.
10.G. Muthuverrappan, et al., “Vibration of Square Cantilever Plate Immersed in Water”, Journal of Sound and Vibration, Vol.61, No.3, pp467-470, 1978.
11.G. Muthuverrappan, et al., “A Note on Vibration of a Cantilever Plate Immersed in Water”, Journal of Sound and Vibration, Vol.63, No.3, pp385-391, 1979.
12.G. Muthuverrappan, et al., “Influence of Fluid Added Mass on the vibration Characteristics of Plate Under Various Boundary Condi- tions ”, Journal of Sound and Vibration, Vol.69, No.4, pp612-615, 1980.
13.J.-S. Wu and S.-S. Luo, “Use of the Analytical and Numerical Combined Method in the Free Vibration Analysis of a Rectangular Plate with Any Number of Point Masses and Translational Springs”, Journal of Sound and Vibration, Vol.200, No.2, pp.179-194, 1997.
14.羅仕欣, “利用解析解與數值混合法求附帶集中質量及集中彈簧之均勻矩形平板的振動反應”, 國立成功大學造船暨船舶機械工程學研究所碩士論文,民國84年。
15.周錫明,”附帶任意個數之各類集中元素的均勻樑及平板之自由振動分析”, 國立成功大學造船暨船舶機械工程學研究所博士論文,民國84年。
16.楊滄智, “附帶任意集中質量及集中線性彈簧之不均勻方形板的自由振動分析”, 國立成功大學造船暨船舶機械工程學研究所碩士論文,民國89年。
17.Leonard Meirovitch, Analytical Methods in Vibration, Mecmillan Company London, 1967.
18.J. S. Przemieniecki, Theory of Matrix Structural Analysis, McGraw- Hill, Inc., 1968.
19.Rudolph and Szilard, Theory and Analysis of Plates, Prentice-Hill, Inc., 1974.
20.R. W. Clough, and J. Penzien, Dynamics of Structures, McGraw-Hill, Inc., 1975.
21.Wu, J. S. and Lin, T. L., “Free Vibration of a Uniform Cantilever Beam with Point Masses by an Analytical-and-Numerical-Combined Method”, Journal of Sound and Vibration, Vol. 136, No. 2, 1990.