簡易檢索 / 詳目顯示

研究生: 歐翰璋
Ou, Han-Jang
論文名稱: 鐵硫錯合物含一氧化氮配位基的合成及鑑定/鐵硫錯合物還原亞硝酸的反應探討
Synthesis and Characterization of Iron Nitrosyl Thiolate Complexes; Studies of Nitrite Reduction by Iron Thiolate Complexes
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 95
中文關鍵詞: 亞硝酸還原鐵硫錯合物{FeNO}6/{FeNO}7
外文關鍵詞: nitrite reduction, iron thiolate complex, {FeNO}6/{FeNO}7
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一氧化氮不僅是生理和病理學中的重要的分子,而且在細菌的反硝化過程中是必要的中間物。為了了解生物系統中的亞硝酰亞鐵中間體,本實驗得到及研究了幾種亞硝酰亞鐵錯合物。我們得到[PPh4][Fe(PS3”)(NO)] (1)、[Fe(PS3”)(NO)] (2)和 [Fe(PSS-S”)2(NO)] (3)。錯合物1和3是屬於{FeNO}7形式。錯合物2是屬於{FeNO}6形式。錯合物1和2都是鐵為中心的五配位扭曲雙三角錐幾何結構。然而,錯合物3是鐵為中心的結構,其幾何結構偏向於扭曲雙三角錐幾何結構。三種錯合物都經由紫外光-可見光-進紅外光光譜和核磁共振光譜進行分析和鑑定。電化學性質已經經由循環伏安法進行研究,而磁性化學則經由超導量子干涉震動磁量儀和電子順磁共振儀進行研究。
    另外,本實驗還研究[PPh4][Fe(PS3”)(CH3CN)] (4)和[PPh4][Fe(PS3”)(OCH3)] (5)與亞硝酸鹽的反應。錯合物4和5已經被我們實驗室所研究。電噴灑游離質譜和紫外光-可見光-進紅外光光譜用來追蹤反應變化。而向[PPh4][Fe(PS3”)(CH3CN)] (4)溶液加入4~5當量的亞硝酸鹽最終形成[PPh4][Fe(PS3”)(NO)] (1)。在電噴灑游離質譜中觀察到反應的中間體,於是闡明了反應途徑。

    Nitric oxide (NO) is not only an important small molecule in physiology and pathology but also an essential intermediate during the denitrifying process in bacteria. In order to understand iron nitrosyl intermediates in biological systems, several iron nitrosyl complexes are obtained and studied at this work. They are [PPh4][Fe(PS3”)(NO)] (1), [Fe(PS3”)(NO)] (2) and [Fe(PSS-S”)2(NO)] (3) (PS3”: tris(benzenethiolato)phosphine). Complexes 1 and 3 are {FeNO}7 species. Complex 2 is a {FeNO}6 species. Complexes 1 and 2 both have five-coordinated iron centers with distorted trigonal bipyramidal geometry, but complex 3 embraces a five-coordinated iron center, and the geometry of complex 3 is more likely trigonal bipyramid geometry. All three complexes have been characterized by UV-vis-NIR and NMR spectroscopies. The electrochemical properties have been studied by cyclic voltammogram and magnetic nature is investigated by SQUID and EPR measurements.
    In addition, reactions of [PPh4][Fe(PS3”)(CH3CN)] (4) and [PPh4][Fe(PS3”)(OCH3)] (5), reported previously in our laboratory, with nitrite are also investigated. The ESI-MS and UV-vis-NIR spectroscopies are used to follow the reaction profiles. Adding 4~5 equivalents of nitrite to [PPh4][Fe(PS3”)(CH3CN)] (4) results in the formation of [PPh4][Fe(PS3”)(NO)] (1). The reaction intermediates are observed in ESI-MS spectra. The reaction pathways are elucidated accordingly.

    Table of Content Abstract I 中文摘要 II 誌謝 III List of Tables VII List of Figures VIII List of Schemes XIII Abbreviations XIV Chapter 1: Introduction 1 1-1. Iron Nitrosyl complexes 1 Nitrite Reductase 1 Non-heme {FeNO}7 complexes 2 Non-heme {FeNO}6 complexes 4 1-2. Nitrite reductase reactions 6 1-3 Motivation of this work 11 Chapter 2:Results and Discussions 12 Chemistry of [PPh4][Fe(PS3”)(NO)] (1), [Fe(PS3”)(NO)] (2) and [Fe(PSS-S”)2(NO)] (3). 12 2-1 Synthesis and Characterization of [PPh4][Fe(PS3”)(NO)] (1). 12 The X-ray structure. 12 Elemental analysis. 16 The UV-vis-NIR spectrum. 16 The ESI-MS spectrum. 17 The 1H-NMR spectrum. 18 Magnetic Properties. 19 The electron spin resonance spectroscopy. 21 The IR spectrum. 22 Electrochemical study. 24 2-2 Synthesis and Characterization of [Fe(PS3”)(NO)] (2). 25 The X-ray structure. 25 The UV-vis-NIR spectrum. 30 The 1H-NMR spectrum. 31 The IR spectrum 32 Electrochemical study 33 2-3 Synthesis and Characterization of [Fe(PSS-S”)2(NO)] (3). 34 The X-ray structure. 34 Elemental analysis. 38 The UV-vis-NIR spectrum. 39 The ESI-MS spectrum. 40 The 1H-NMR spectrum. 43 Magnetic Properties. 44 The IR spectrum. 46 Electrochemical study. 47 2-4 Comparison of [PPh4][Fe(PS3”)(NO)] (1), [Fe(PS3”)(NO)] (2) and [Fe(PSS-S”)2(NO)] (3) 48 Structural properties. 48 The IR spectrum. 53 Magnetic properties. 54 Electrochemical study 56 2-5 Reactivity studies of [PPh4][Fe(PS3”)(CH3CN)] (4) and [PPh4][Fe(PS3”)(OCH3)] (5) with nitrite. 57 Reactivity of [PPh4][Fe(PS3”)(CH3CN)] (4) with nitrite monitoring by ESI-MS. 58 Reactivity of [PPh4][Fe(PS3”)(CH3CN)] (4) with nitrite monitoring by UV-vis-NIR spectroscopy. 66 Reactivity of [PPh4][Fe(PS3”)(OCH3)] (5) with nitrite monitoring by ESI-MS. 67 Reactivity of [PPh4][Fe(PS3”)(OCH3)] (5) with nitrite monitoring by UV-vis-NIR spectroscopy. 71 Proposed mechanism I 72 Proposed mechanism II. 73 Proposed mechanism III. 74 Chapter 3:Conclusion 75 Chapter 4 : Experimental and Instruments 76 4-1 General procedures 76 4-2 Synthesis. 77 Synthesis of [PPh4][Fe(PS3”)(NO)] (1): 77 Synthesis of [Fe(PS3”)(NO)] (2): 77 Synthesis of [Fe(PSS-S”)(NO)] (3): 78 Synthesis of [PPh4][Fe(PS3”)(CH3CN)] (4): 78 Synthesis of [PPh4][Fe(PS3”)(OCH3)] (5): 79 4-3 Instruments. 80 Ultraviolet-visible spectroscopy. 80 Nucleic Magnetic Resonance Spectroscopy 80 Mass Spectrometry 80 Magnetic measurement. 80 Electron paramagnetic resonance 80 Cyclic Voltammetry 81 X-ray crystallographic data collection of the structures. 81 Infrared Spectroscopy. 81 Referencese 82 Appendix 87 CIF check of [PPh4][Fe(PS3”)(NO)] (1) 87 CIF check of [Fe(PS3”)(NO)] (2) 90 CIF check of [Fe(PSS-S”)2(NO)] (3) 93

    1. Moncada, S.; Palmer, R.; Higgs, E., Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological reviews 1991, 43 (2), 109-142.
    2. Maia, L. B.; Moura, J. J., How biology handles nitrite. Chem Rev 2014, 114 (10), 5273-357.
    3. Pina-Ochoa, E.; Hogslund, S.; Geslin, E.; Cedhagen, T.; Revsbech, N. P.; Nielsen, L. P.; Schweizer, M.; Jorissen, F.; Rysgaard, S.; Risgaard-Petersen, N., Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc Natl Acad Sci U S A 2010, 107 (3), 1148-53.
    4. Shoun, H.; Fushinobu, S.; Jiang, L.; Kim, S. W.; Wakagi, T., Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos Trans R Soc Lond B Biol Sci 2012, 367 (1593), 1186-94.
    5. Adman, E. T.; Godden, J.; Turley, S., The Structure of Copper-nitrite Reductase from Achromobacter cycloclastes at Five pH Values, with NO− 2 Bound and with Type II Copper Depleted. Journal of Biological Chemistry 1995, 270 (46), 27458-27474.
    6. Nurizzo, D.; Silvestrini, M.-C.; Mathieu, M.; Cutruzzolà, F.; Bourgeois, D.; Fülöp, V.; Hajdu, J.; Brunori, M.; Tegoni, M.; Cambillau, C., N-terminal arm exchange is observed in the 2.15 Å crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure 1997, 5 (9), 1157-1171.
    7. Nurizzo, D.; Cutruzzolà, F.; Arese, M.; Bourgeois, D.; Brunori, M.; Cambillau, C.; Tegoni, M., Conformational changes occurring upon reduction and NO binding in nitrite reductase from Pseudomonas aeruginosa. Biochemistry 1998, 37 (40), 13987-13996.
    8. Fülöp, V.; Moir, J. W.; Ferguson, S. J.; Hajdu, J., The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell 1995, 81 (3), 369-377.
    9. Cheesman, M. R.; Ferguson, S. J.; Moir, J. W.; Richardson, D. J.; Zumft, W. G.; Thomson, A. J., Two enzymes with a common function but different heme ligands in the forms as isolated. Optical and magnetic properties of the heme groups in the oxidized forms of nitrite reductase, cytochrome cd 1, from Pseudomonas stutzeri and Thiosphaera pantotropha. Biochemistry 1997, 36 (51), 16267-16276.
    10. Williams, P. A.; Fülöp, V.; Garman, E. F.; Saunders, N. F.; Ferguson, S. J.; Hajdu, J., Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature 1997, 389 (6649), 406-412.
    11. Cutruzzolà, F.; Arese, M.; Grasso, S.; Bellelli, A.; Brunori, M., Mutagenesis of nitrite reductase from Pseudomonas aeruginosa: tyrosine‐10 in the c heme domain is not involved in catalysis. FEBS letters 1997, 412 (2), 365-369.
    12. Radoul, M.; Centola, F.; Rinaldo, S.; Cutruzzola, F.; Pecht, I.; Goldfarb, D., Heme d1 nitrosyl complex of cd1 nitrite reductase studied by high-field-pulse electron paramagnetic resonance spectroscopy. Inorganic chemistry 2009, 48 (9), 3913-3915.
    13. Enemark, J.; Feltham, R., Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coordination Chemistry Reviews 1974, 13 (4), 339-406.
    14. Haller, K. J.; Johnson, P. L.; Feltham, R. D.; Enemark, J. H.; Ferraro, J. R.; Basile, L. J., Effects of temperature and pressure on the molecular and electronic structure of N, N′-ethylenebis (salicylideneiminato) nitrosyliron, Fe (NO)(salen). Inorganica Chimica Acta 1979, 33, 119-130.
    15. Numata, Y.; Kubokura, K.; Nonaka, Y.; Okawa, H.; Kida, S., Synthesis and property of nitrosyl cobalt and nitrosyl iron complexes with some quadridentate ligands. Inorganica Chimica Acta 1980, 43, 193-197.
    16. Li, M.; Bonnet, D.; Bill, E.; Neese, F.; Weyhermüller, T.; Blum, N.; Sellmann, D.; Wieghardt, K., Tuning the Electronic Structure of Octahedral Iron Complexes [FeL (X)](L= 1-Alkyl-4, 7-bis (4-tert-butyl-2-mercaptobenzyl)-1, 4, 7-triazacyclononane, X= Cl, CH3O, CN, NO). The S= 1/2⇌ S= 3/2 Spin Equilibrium of [FeLPr (NO)]. Inorganic chemistry 2002, 41 (13), 3444-3456.
    17. Piñeiro‐López, L.; Ortega‐Villar, N.; Muñoz, M. C.; Molnár, G.; Cirera, J.; Moreno‐Esparza, R.; Ugalde‐Saldívar, V. M.; Bousseksou, A.; Ruiz, E.; Real, J. A., Electronic Structure Modulation in an Exceptionally Stable Non‐Heme Nitrosyl Iron (II) Spin‐Crossover Complex. Chemistry-A European Journal 2016, 22 (36), 12741-12751.
    18. Serres, R. G.; Grapperhaus, C. A.; Bothe, E.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K., Structural, Spectroscopic, and Computational Study of an Octahedral, Non-Heme {Fe-NO} 6-8 Series:[Fe (NO)(cyclam-ac)] 2+/+/0. Journal of the American Chemical Society 2004, 126 (16), 5138-5153.
    19. Sellmann, D.; Blum, N.; Heinemann, F. W.; Hess, B. A., Synthesis, reactivity, and structure of strictly homologous 18 and 19 valence electron iron nitrosyl complexes. Chemistry–A European Journal 2001, 7 (9), 1874-1880.
    20. Pitarch López, J.; Heinemann, F. W.; Prakash, R.; Hess, B. A.; Horner, O.; Jeandey, C.; Oddou, J. L.; Latour, J. M.; Grohmann, A., Iron Carbonyl, Nitrosyl, and Nitro Complexes of a Tetrapodal Pentadentate Amine Ligand: Synthesis, Electronic Structure, and Nitrite Reductase‐like Reactivity. Chemistry–A European Journal 2002, 8 (24), 5709-5722.
    21. Patra, A. K.; Afshar, R.; Olmstead, M. M.; Mascharak, P. K., The first non‐heme iron (III) complex with a ligated carboxamido group that exhibits photolability of a bound NO ligand. Angewandte Chemie International Edition 2002, 41 (14), 2512-2515.
    22. Conradie, J.; Quarless, D. A.; Hsu, H.-F.; Harrop, T. C.; Lippard, S. J.; Koch, S. A.; Ghosh, A., Electronic structure and FeNO conformation of nonheme iron-thiolate-NO complexes: An experimental and DFT study. Journal of the American Chemical Society 2007, 129 (34), 10446-10456.
    23. Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T., The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nature reviews Drug discovery 2008, 7 (2), 156-167.
    24. Huang, K. T.; Keszler, A.; Patel, N.; Patel, R. P.; Gladwin, M. T.; Kim-Shapiro, D. B.; Hogg, N., The reaction between nitrite and deoxyhemoglobin Reassessment of reaction kinetics and stoichiometry. Journal of Biological Chemistry 2005, 280 (35), 31126-31131.
    25. Shiva, S.; Huang, Z.; Grubina, R.; Sun, J.; Ringwood, L. A.; MacArthur, P. H.; Xu, X.; Murphy, E.; Darley-Usmar, V. M.; Gladwin, M. T., Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circulation research 2007, 100 (5), 654-661.
    26. Tiso, M.; Tejero, J.; Basu, S.; Azarov, I.; Wang, X.; Simplaceanu, V.; Frizzell, S.; Jayaraman, T.; Geary, L.; Shapiro, C., Human neuroglobin functions as a redox-regulated nitrite reductase. Journal of Biological Chemistry 2011, 286 (20), 18277-18289.
    27. Gamgee, A., Researches on the blood. On the action of nitrites on blood. Philosophical Transactions of the Royal Society of London 1868, 158, 589-625.
    28. Haldane, J., The Red Colour of Salted Meat.(One Figure in the Text.). Journal of Hygiene 1901, 1 (01), 115-122.
    29. Heinecke, J.; Ford, P. C., Mechanistic studies of nitrite reactions with metalloproteins and models relevant to mammalian physiology. Coordination Chemistry Reviews 2010, 254 (3), 235-247.
    30. Brooks, J., The action of nitrite on haemoglobin in the absence of oxygen. Proceedings of the Royal Society of London. Series B, Biological Sciences 1937, 368-382.
    31. Copeland, D. M.; Soares, A. S.; West, A. H.; Richter-Addo, G. B., Crystal structures of the nitrite and nitric oxide complexes of horse heart myoglobin. Journal of inorganic biochemistry 2006, 100 (8), 1413-1425.
    32. Yi, J.; Safo, M. K.; Richter-Addo, G. B., The Nitrite Anion Binds to Human Hemoglobin via the Uncommon O-Nitrito Mode†. Biochemistry 2008, 47 (32), 8247-8249.
    33. Berto, T. C.; Lehnert, N., Density Functional Theory Modeling of the Proposed Nitrite Anhydrase Function of Hemoglobin in Hypoxia Sensing. Inorganic chemistry 2011, 50 (16), 7361-7363.
    34. Tovrog, B. S.; Diamond, S. E.; Mares, F., Oxygen transfer from ligands: cobalt nitro complexes as oxygenation catalysts. Journal of the American Chemical Society 1979, 101 (1), 270-272.
    35. Khin, C.; Heinecke, J.; Ford, P. C., Oxygen atom transfer from nitrite mediated by Fe (III) porphyrins in aqueous solution. Journal of the American Chemical Society 2008, 130 (42), 13830-13831.
    36. Kurtikyan, T. S.; Hovhannisyan, A. A.; Iretskii, A. V.; Ford, P. C., Six-Coordinate Nitro Complexes of Iron (III) Porphyrins with trans S-Donor Ligands. Oxo-Transfer Reactivity in the Solid State. Inorganic chemistry 2009, 48 (23), 11236-11241.
    37. Patra, A. K.; Afshar, R. K.; Rowland, J. M.; Olmstead, M. M.; Mascharak, P. K., Thermally Induced Stoichiometric and Catalytic O‐Atom Transfer by a Non‐Heme Iron (III)–Nitro Complex: First Example of Reversible {Fe–NO} 7↔ FeIII‐NO2 Transformation in the Presence of Dioxygen. Angewandte Chemie International Edition 2003, 42 (37), 4517-4521.
    38. Afshar, R. K.; Eroy-Reveles, A. A.; Olmstead, M. M.; Mascharak, P. K., Stoichiometric and catalytic secondary O-atom transfer by Fe (III)-NO2 complexes derived from a planar tetradentate non-heme ligand: reminiscence of heme chemistry. Inorganic chemistry 2006, 45 (25), 10347-10354.
    39. Tsai, F.-T.; Chen, P.-L.; Liaw, W.-F., Roles of the distinct electronic structures of the {Fe (NO) 2} 9 and {Fe (NO) 2} 10 dinitrosyliron complexes in modulating nitrite binding modes and nitrite activation pathways. Journal of the American Chemical Society 2010, 132 (14), 5290-5299.
    40. He, C.; Howes, B. D.; Smulevich, G.; Rumpel, S.; Reijerse, E. J.; Lubitz, W.; Cox, N.; Knipp, M., Nitrite Dismutase Reaction Mechanism: Kinetic and Spectroscopic Investigation of the Interaction between Nitrophorin and Nitrite. Journal of the American Chemical Society 2015, 137 (12), 4141-4150.
    41. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C., Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1, 7-bis (N-methylbenzimidazol-2′-yl)-2, 6-dithiaheptane] copper (II) perchlorate. Journal of the Chemical Society, Dalton Transactions 1984, (7), 1349-1356.
    42. Li, J.; Banerjee, A.; Pawlak, P. L.; Brennessel, W. W.; Chavez, F. A., Highest Recorded N–O Stretching Frequency for 6-Coordinate {Fe-NO} 7 Complexes: An Iron Nitrosyl Model for His3 Active Sites. Inorganic chemistry 2014, 53 (11), 5414-5416.
    43. McQuilken, A. C.; Ha, Y.; Sutherlin, K. D.; Siegler, M. A.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Jameson, G. N.; Goldberg, D. P., Preparation of Non-heme {FeNO} 7 Models of Cysteine Dioxygenase: Sulfur versus Nitrogen Ligation and Photorelease of Nitric Oxide. Journal of the American Chemical Society 2013, 135 (38), 14024-14027.
    44. Villar-Acevedo, G.; Nam, E.; Fitch, S.; Benedict, J.; Freudenthal, J.; Kaminsky, W.; Kovacs, J. A., Influence of thiolate ligands on reductive N-O bond activation. Probing the O2(-) binding site of a biomimetic superoxide reductase analogue and examining the proton-dependent reduction of nitrite. J Am Chem Soc 2011, 133 (5), 1419-27.
    45. Ray, M.; Golombek, A. P.; Hendrich, M. P.; Yap, G. P.; Liable-Sands, L. M.; Rheingold, A., L; Borovik, A., Structure and magnetic properties of trigonal bipyramidal iron nitrosyl complexes. Inorganic Chemistry 1999, 38 (13), 3110-3115.
    46. Chang, Y.-H.; Chan, P.-M.; Tsai, Y.-F.; Lee, G.-H.; Hsu, H.-F., Catalytic Reduction of Hydrazine to Ammonia by a Mononuclear Iron (II) Complex on a Tris (thiolato) phosphine Platform. Inorganic chemistry 2013, 53 (2), 664-666.
    47. Chang, K.-C.; Huang, C.-J.; Chang, Y.-H.; Wu, Z.-H.; Kuo, T.-S.; Hsu, H.-F., Reactivity of a Fe (III)-Bound Methoxide Supported with a Tris (thiolato) phosphine Ligand: Activation of C–Cl Bond in CH2Cl2 by Nucleophilic Attack of a Fe (III)–OCH3 Moiety. Inorganic chemistry 2015, 55 (2), 566-572.

    無法下載圖示 校內:2017-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE