簡易檢索 / 詳目顯示

研究生: 王苡璇
Wang, Yi-Hsuan
論文名稱: 六邊形氧化鋅微米共振腔共振模態的耦合效應
The Coupling Effect Of Resonant Modes In Hexagonal ZnO Microcavities
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 51
中文關鍵詞: 六邊形共振腔共振模態有限時域差分法耦合效應
外文關鍵詞: hexagonal cavity, resonant mode, FDTD, coupling effect
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅為雷射二極體的熱門材料之一,因為其具有寬能隙(3.37 eV)以及大的激子束縛能(60 meV),且成本也低廉。在晶格結構方面,氧化鋅晶體屬於六方晶系,在ab平面呈現完美的六邊形共振腔結構,因而能夠產生準迴廊模態(quasi-WGM, quasi-whispering gallery mode)與迴廊模態(WGM, whispering gallery mode),使能量被限制在六邊形共振腔之中。然而,在微米等級以下的共振腔,由於狹窄的自由頻譜範圍(FSR, free spectral range),會產生多重的共振模態,因此可以利用游標尺效應,將不同的共振腔相互耦合,進行二次選模,以獲得單一模態。本文運用有限時域差分法(FDTD, finite-difference time-domain)進行數值模擬,使用三角形網格坐標系統以及對稱軸的設置,減低模擬的運算量,並利用共振腔的耦合效應,提高共振頻譜的強度,並改變共振腔之間的間隙大小,觀察其共振模態的變化。此外,我們也將兩邊長不同的六邊形共振腔相互耦合,改變其共振頻譜的強度分布,其共有的共振波長將會成為極大值,呈現如同光柵般的頻譜強度分布。

    The hexagonal crystal structure of zinc oxide makes it easy to produce resonant modes such as quasi-WGMs and WGM. In this thesis, we used the FDTD, finite-difference time domain, method to simulate hexagonal ZnO cavities. We improved the simulation space by using triangle meshes and a symmetric axis so as to make the simulation space fit hexagonal ZnO cavities and reduce simulation time. Then, we simulated a hexagonal ZnO cavity by two kinds of the simulation space. One is square-meshed and the other is triangle-meshed. We analyzed the wavelengths of the resonant modes of the two spectra and concluded that the triangle-meshed coordinate system was a better choice than the square-meshed one when hexagonal cavities were simulated. Next, we made a hexagonal ZnO cavity couple with a silica substrate or another same-sized cavity. The intensity increased result from the coupling effect. Besides, we coupled a hexagonal ZnO cavity of which the side length was 1090 nanometers with another one of which the side length was 2000 nanometers and its spectrum looked like the one with gating effect.

    摘要 i Abstract ii 誌謝 vi 目錄 vii 圖目錄 ix 第一章 序論 1 1-1 前言 1 1-2研究動機 2 1-3 內容架構 3 第二章 相關研究理論簡介 4 2-1 六邊形共振腔的模態 4 2-2 模態數與共振波長關係式 6 2-3 六邊形迴廊模態(WGM)的對稱性 13 2-4 多重介質的反射與折射 14 2-5 游標尺效應(Vernier Effect) 15 第三章 有限時域差分法(FDTD) 16 3-1 直角坐標系 17 3-2 三角坐標系 26 3-3 同軸完美匹配層(UPML) 30 第四章 模擬過程與結果討論 34 4-1 不同坐標系下模擬的差異 36 4-2 氧化鋅共振腔與基板的耦合效應分析 39 4-2.1 耦合效應的頻譜分析 39 4-2.2 不同間隙對耦合效應的影響 40 4-3 兩個氧化鋅共振腔的耦合效應 43 4-3.1 兩相同大小的氧化鋅共振腔耦合的模態分析 43 4-3.2 兩不同大小的氧化鋅共振腔耦合的頻譜分析 45 第五章 結論與未來展望 47 5-1 結論 47 5-2 未來展望 48 參考文獻 49

    1. Vaseem, M., A. Umar, and Y.-B. Hahn, ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications, 2010. 5: p. 1-36.
    2. Taghavi, M., et al., Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method. Nanoscale, 2013. 5(8): p. 3505-3513.
    3. Ong, C.B., L.Y. Ng, and A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 2018. 81: p. 536-551.
    4. Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of applied physics, 2005. 98(4): p. 11.
    5. Adegoke, K.A., et al., Photocatalytic conversion of CO2 using ZnO semiconductor by hydrothermal method. Pakistan Journal of Analytical & Environmental Chemistry, 2018. 19(1): p. 1-27.
    6. Saeung, P. and P.P. Yupapin, Vernier effect of multiple-ring resonator filters modeling by a graphical approach. Optical Engineering, 2007. 46(7): p. 6.
    7. Azuelos, P., et al., Theoretical investigation of Vernier effect based sensors with hybrid porous silicon-polymer optical waveguides. Journal of Applied Physics, 2017. 121(14): p. 10.
    8. Saleh, K., et al., Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb. Scientific Reports, 2018. 8: p. 11.
    9. Shang, L., L. Liu, and L. Xu, Single-frequency coupled asymmetric microcavity laser. Optics letters, 2008. 33(10): p. 1150-1152.
    10. Kudo, H., R. Suzuki, and T. Tanabe, Whispering gallery modes in hexagonal microcavities. Physical Review A, 2013. 88(2): p. 7.
    11. Song, Q.H., et al., Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes. Physical Review A, 2013. 88(2): p. 5.
    12. Yang, Y.D., et al., Whispering-gallery mode hexagonal micro-/nanocavity lasers Invited. Photonics Research, 2019. 7(5): p. 594-607.
    13. Nobis, T. and M. Grundmann, Low-order optical whispering-gallery modes in hexagonal nanocavities. Physical Review A, 2005. 72(6): p. 11.
    14. Cureton, L.T. and J.R. Kuttler, Eigenvalues of the Laplacian on regular polygons and polygons resulting from their disection. Journal of Sound and Vibration, 1999. 220(1): p. 83-98.
    15. Wiersig, J., Hexagonal dielectric resonators and microcrystal lasers. Physical Review A, 2003. 67(2): p. 12.
    16. Wilkinson, W.P., Multiple encounters of a specularly reflected ion with planar quasi-perpendicular shocks. Planetary and Space Science, 1999. 47(3-4): p. 529-543.
    17. Zhao, Y.J., et al., Cascaded Mach-Zehnder Interferometers With Vernier Effect for Gas Pressure Sensing. Ieee Photonics Technology Letters, 2019. 31(8): p. 591-594.
    18. Wang, Y.Y., et al., Plasmon enhancement for Vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities. Nano Research, 2017. 10(10): p. 3447-3456.
    19. Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 1966. 14(3): p. 302-307.
    20. Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics, 1994. 114(2): p. 185-200.
    21. Sacks, Z.S., et al., A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE transactions on Antennas and Propagation, 1995. 43(12): p. 1460-1463.
    22. Shibayama, J., et al., Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electronics Letters, 2005. 41(19): p. 1046-1047.
    23. Feizi, M.N., V. Nayyeri, and O.M. Ramahi, Modeling Magnetized Graphene in the FiniteDifference Time-Domain Method Using an Anisotropic Surface Boundary Condition. Ieee Transactions on Antennas and Propagation, 2018. 66(1): p. 233-241.
    24. Oskooi, A.F., et al., MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010. 181(3): p. 687-702.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE