| 研究生: |
謝婉陵 Hsieh, Wan-Ling |
|---|---|
| 論文名稱: |
應用二元模糊語意變數於群體決策之偏好評估 Applying 2-Tuple Fuzzy Linguistic Representation Model in Evaluating Preference of Group Decision Making |
| 指導教授: |
陳梁軒
Chen, Lian-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 二元模糊語意變數 、模糊偏好 、群體決策 、模糊集合理論 |
| 外文關鍵詞: | 2-tuple fuzzy linguisgtic representation, fuzzy preference, group decision making, fuzzy set theory |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球化時代來臨,決策問題範圍的擴大,以往單憑個人知識或經驗判斷而行的決策方式已不敷使用,群體決策應運而生。決策問題通常包含決策者主觀的意見,而專家在評斷對於方案的偏好時,常會因為本身的文化背景不同而使用不同的評估方式,然而傳統的語意變數表示法,在轉換過程中常會造成資訊的遺漏,導致作出不完善的決策。此外,在群體決策中,常常存在著不同決策者對此決策扮演著不同重要程度的角色,其中更會存在著一個影響此決策最重要的決策者。針對上述問題,本研究在群體偏好決策問題中,導入二元模糊語意變數來有效整合多位決策人員的異質評估資訊,並考量在群體決策中有一位主要的決策者,比較其他決策者與主要決策者的偏好,藉由此方法先過濾出與最重要的決策者相去甚遠的意見,並利用模糊語意量子導引之循序權重平均運算子整合各專家一致化後之偏好資訊與權重加以運算,以協助企業決定對本身最佳的方案順位。最後代入範例演算以及將本模式與Xu (2004b, 2005) 模式相比較,證明本模式可更廣泛且準確的應用於群體決策偏好資訊處理。
In most of the group decision making problems, the preference information provided by experts is represented in the same format. However, with multiple individuals in decision situations, each one has his own knowledge on the alternatives of the decision problem. The use of information assessed in different domains usually happens in the real world. To make the preference information uniform, the traditional way “linguistic label representation” is adopted. But in the transforming phase, it may cause information loss. Besides, usually there is a leader among the group decision makers, each expert’s preference information in the group must be within a specified deviation degree.
In order to consider the above problems, firstly we apply the 2-tuple fuzzy linguistic representation model to deal with non-homogeneous information, which can be represented as values belonging to domains with different nature as linguistic, numerical and internal valued. In the second, the deviation measures of preference relations are used to screen each expert’s preference information to make sure that all the experts’ information is acceptable. After the preference information is unified and within deviation degree, FLOG-OWA is used to perform the aggregation process. Therefore, the rank of all the alternatives can be determined.
Finally, to evaluate the proposed model, we compare with Xu (2004b, 2005). The results show that the proposed model can be applied widely and precisely in preference information.
Carlsson, C., Fuller, R. (2000), “Benchmarking in linguistic importance weighted aggregations,” Fuzzy Sets and Systems, 114, 35-41
Chiclana, F., Herrera, F., Herrera-Viedma, E.(1998), “Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations,” Fuzzy Sets and Systems, 97, 33-48
Choi, H-A., Suh, E-H., Suh, C-K. (1994), “Analytic hierarchy process: it can work for group decision support systems,” Computers and Industrial Engineering, 27 :1-41-4, 167-171
Delgado, M., Herrera F., Herrera-Viedma E., Martínez L.(1998),“Combining
numerical and linguistic information in group decision making,” Information Science, no. 107, pp. 177–194
Delgado, M., Verdegay, J.L., Vila, M.A. (1993), “On aggregation operations of linguistic labels,” International Journal of Intelligent Systems, 8, 351-370
Dong, Y., Xu, Y., Yu, S. (2009), “Linguistic multiperson decision making based on the use of multiple preference relations,” Fuzzy Sets and Systems, 160, 603-623
Dubois, D. & Prade, H.(1978), “Operations on fuzzy numbers”, International Journal of Systems Science, 9(6), 613-626
G. A. Miller (1956), “The magical number seven or minus two: some limits on our capacity of processing information,” Psychological Review, 63, 81-97
Ghyym, S. H.(1999), “A semi-linguistic fuzzy approach to multi-actor decision-making: application to aggregation of experts’ judgments,” Annals of Nuclear Energy, 26, 1097-1112.
Herrera, F., Herrera-Viedma, E., Chiclana, F. (2000), “A fusion approach for managing multi-granular linguistic term sets in decision making,” Fuzzy Sets and Systems, 114, 43-58.
Herrera, F., Herrera-Viedma, E., Verdegay, J.L.(1996), “ Direct approach processes in group decision making using linguistic OWA operators,” Fuzzy Sets and Systems, 79, 175-190
Herrera, F., Martinez, L. (2000a), “A 2-tuple fuzzy linguistic representation model for computing with words,” IEEE Transactions on Fuzzy Systems, 8, 6,746-752
Herrera, F., Martinez, L. (2000b), “An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representaqtion model in decision-making,” International Journal of Uncertainty and Knowledge-Based Systems, 8, 5, 539-562
Herrera, F., Martinez, L. (2001a), “A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision making,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 31(2)
Herrera, F., Martinez, L. (2001b), “The 2-tuple linguistic computational model. Advantages of its linguistic description, accuracy and consistency,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9, 33-48
Herrera-Viedma, E., Martinez, L., Mata, F. Chiclana, F. (2005), “A consensus support system model for group decision-making problems with multigranular linguistic preference relations,” IEEE Transactions on Fuzzy Systems, 13, 5, 644-658
Herrera, F., Martinez, L., Sanchez P. J.(2005), “Managing non-homogeneous information in group decision making,” European Journal of Operational Research, 166, 115-132
Jelassi, T., Kersten, G., Zionts, S. (1990), “An Introduction to Group Decision and Negotiation Support. In: Carlos, A. Banae Costa (Ed.),” Readings in Multiple Criteria Decision Aid. Berlin: Springer
Sen, A.K. (1970), Collective Choice and Social Welfare, San Francisco, CA : Holden-Day
Sanchez P. J., Martinez L., Garcia-Martinez C., Herrera F., Herrera-Viedma E. (2009), “A fuzzy model to evaluate the suitability of installing an enterprise resource planning system,” Information Science, 179, 2333-2341
Turban, E. (1988), Decision Support Systems and Expert Systems: Managerial Perspectives,” New York: Macmillan
Wang W.-P. (2009), “Toward developing agility evaluation of mass customization systems using 2-tuple linguistic computing,” Expert Systems with Applications, 36, 3439-3447
Xu, Z.-S. (2004a), “EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations,” International Journal of Intelligent Systems, 12 (6), 791-810
Xu, Z.-S. (2004b), ” On compatibility of interval fuzzy preference relations,” Fuzzy Optimization and Decision Making, 3, 217-225
Xu, Z.-S. (2005), “Deviation measures of linguistic preference relations in group decision making”, Omega, The International Journal of Management Science, 33, 249-254
Yager, R. R. (1988), “On ordered weighted averaging aggregation operators in multicriteria decision making,” IEEE Transactions System, Man, and Cybernetics, no. 18, 183-190
Zadeh, L. A.(1965), “Fuzzy sets,” Information and Control, 8(3), 338-353
Zadeh, L. A.(1975), “Fuzzy logic and approximate reasoning,” Synthese, 30(3-4), 407-428