簡易檢索 / 詳目顯示

研究生: 林恩如
Lin, En-Ju
論文名稱: 計算崩塌因子之相對貢獻度並根據颱風與地震事件進行驗證—以卑南溪流域為例
Calculating the relative contributions of various factors in a landslide susceptibility model based on earthquake and typhoon events – an example of Beinan River Drainage
指導教授: 劉正千
Liu, Cheng-Chien
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 崩塌颱風地震卑南溪流域崩塌潛勢模型崩塌因子
外文關鍵詞: Landslide, Typhoon, Earthquake, Landslides susceptibility model, landslide factor
相關次數: 點閱:86下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 災害風險最高的六大災害中的地震、崩塌以及颱風都直接地與台灣的崩塌災害有關。根據1985~2009年間的氣象資料顯示,台灣每年因氣象災害造成的平均損失約新台幣160億,主要肇因颱風或豪雨的強降雨特性,而強降雨的沖刷作用使多山的台灣災害格外嚴重。再者台灣屬坡地災害高風險區,且人為開發與極端氣候的發展,更提高了崩塌災害的發生機率。若能以低成本且大範圍的方法對邊坡穩定進行調查、分析、判斷崩塌潛勢高低,如此便能針對高危險地區進一步深入調查,並於崩塌災害來臨前提出預警,且對坡地開發計畫進行建議。
    颱風與地震乃台灣兩大崩塌的主因。故本研究選取經常位於颱風首當其衝(機率約55%)且受台灣三大地震帶之ㄧ-東部地震帶影響之區域-卑南溪流域為研究區域。於促崩事件上,則以2006年4月1日芮氏規模(Richter magnitude scale)6.2初鹿地震,以及兩場強降雨事件(2005年7月16~20日的海棠颱風與2006年7月23~25的凱米颱風)。並利用福衛二號(Formosat-2)影像多頻譜之特性,以「福爾摩沙二號衛星影像自動處理系統」(F-2 AIPS)與「遙測影像崩塌及陰影區專家輔助圈繪系統」來處理衛星影像並判釋崩塌區域、建置崩塌目錄(landslide inventory)。在崩塌因子上,首先參考前人文獻中常用之因子。接著以崩塌密度的概念對各因子進行分類和計算,淘汰精度不足或相關性低的因子,最後以坡度、坡向、地形特徵、岩性這4個關鍵因子,結合三場促崩事件前後的崩塌目錄,進行崩塌潛勢模型(landslide susceptibility model)之建立,並藉由加入雨量資料與地震資料,產製崩塌危害度圖(landslide hazard map),最後以三場事件的新增崩塌來驗證。結果顯示,崩塌危害度圖的趨勢與三場促崩事件的新增崩塌的崩塌機率一致,其崩塌預測準確率約達70~80%。此外,坡腳沖蝕所造成的漏估比例約占全部漏估的1/3~1/4。而不同促崩因素所造成的崩塌,在岩性與崩塌數量和平均面積上,差異最為顯著。

    Typhoon and earthquake which are two of high risk disasters can direct/indirect result in landslide. The fragile geology and rugged topography, together with approximately three to six typhoons and 30 earthquakes of The Richer scale over 5 every year, make Taiwan a place suffered from the frequent landslides. A research showed that the heavy rainfall/typhoon is likely to induce landslide, with average yearly economic losses due to meteorological disasters mounting to billions of NT dollars. Moreover, hillsides development and extreme weather aggravate the probability of landslide. There is no way to investigate all of the slope failure in detail. It is necessary to sift the high susceptibility area from the hillsides and make a hazard warning and suggestion of slope development.
    Typhoon and earthquake are the most important trigger factors of landslides in Taiwan. The study area (Beinan River Basin) which not only locates in the seismic zones, but also suffers from the frequent typhoon in Taiwan, has a lot of landslides. Building the event-based landslides susceptibility model is inevitable. The pre- and post- event images of Typhoon Hatang (2005/7/16~20), Earthquake (2006/4/1), Typhoon Gaemi (2006/7/23~25) were obtained from the archive of Formosat-2 and processed to orthorectified images and landslides inventories by the application of Formosat-2 Automatic Image Processing System (F-2 AIPS). Referring to reference and using the concept of landslide intensity to select key susceptibility factors—slope, aspect, topographic feature, and geological composition, then, based on landslide inventories, we build the landslides susceptibility model. Through adjusting the coefficient of relative contribution of factors, we can obtain the optimal model. Based on the rainfall intensity and peak ground acceleration (PGA) we calculate the landslide hazard index. Finally, three trigger events (Haitang typhoon, Chulu earthquake, Gaemi typhoon) were chosen to verify the landslides susceptibility model. The results demonstrate that the mean accuracy of the landslides susceptibility model carefully validated with the event inventories is 70%~80%. 1/3~1/4 miss calculated landslides are toe erosion Among landslides that are caused by different trigger factors, the most obvious differences locate in lithology, number of landslides and average landslide area.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第 1 章 緒論 1 1.1 研究動機 1 1.2 研究目的 4 1.3 論文架構 7 第 2 章 文獻回顧 10 2.1 崩塌之定義與分類 10 2.1.1 崩塌的分類 10 2.2 崩塌致災因子 13 2.2.1 內部因子 14 2.2.2 誘發因子 16 2.3 崩塌潛勢分析 21 2.3.1 崩塌目錄 21 2.3.2 崩塌潛勢圖 23 第 3 章 研究區域 26 3.1 地理位置與概況 26 3.2 地形特色 27 3.3 地質分佈 28 3.4 氣候 30 3.5 水文 31 3.6 雨量站位置分佈 33 第 4 章 研究資料 35 4.1 衛星影像 35 4.2 雨量資料 37 4.3 地震資料 38 4.4 地理圖資 40 第 5 章 研究方法 46 5.1 促崩事件與影像選取 46 5.1.1 地震事件 46 5.1.2 降雨事件 47 5.1.3 影像選取 48 5.2 崩塌目錄 49 5.2.1 衛星影像處理 49 5.2.2 崩塌地判釋 51 5.3 崩塌因子潛勢評估 53 5.3.1 地形因子 54 5.3.2 地質因子 57 5.3.3 水文因子 59 5.3.4 區位因子 61 5.4 崩塌誘發因子 67 5.4.1 雨量因子 67 5.4.2 地震因子 68 第 6 章 結果與討論 69 6.1 崩塌潛感模型之建立與驗證 69 6.1.1 模型之建立 69 6.1.2 模型之驗證 91 6.2 崩塌潛勢模型誤差來源 103 6.2.1 漏估比例 105 6.3 不同事件之崩塌變化 106 第 7 章 結論與建議 112 7.1 結論 112 7.2 建議 113 參考文獻 115 附錄 122

    Ayalew, L., Yamagishi, H. and Ugawa, N., Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan, Landslides, v. 1(1), p. 73-81, 2004.
    Bison, P., Grinzato, E., Pasuto, A. and Silvano, S., Thermal IR remote sensing in landslides survey, International IAEG Congress, p. 837-878, 1990.
    Chang, K.-T., Chiang, S.-H. and Hsu, M.-L., Modeling typhoon-and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, v. 89(3), p. 335-347, 2007.
    Chang, K., Chiang, S. H. and Lei, F., Analysing the Relationship Between Typhoon‐Triggered Landslides and Critical Rainfall Conditions, Earth Surface Processes and Landforms, v. 33(8), p. 1261-1271, 2008.
    Dai, F., and Lee, C., Frequency–volume relation and prediction of rainfall-induced landslides, Engineering Geology, v. 59(3), p. 253-266, 2001.
    Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., Margaret, Arnold, Agwe, J., Buys, P., Kjekstad, O., Lyon, B. and Yetman, G., Natural disaster hotspots: a global risk analysis, The World Bank, v. p. 2005.
    Gillespie, A. R., Kahle, A. B. and Walker, R. E., Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques, Remote sensing of Environment, v. 22(3), p. 343-365, 1987.
    Glade, T., Crozier, M. and Smith, P., Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”, Pure and Applied Geophysics, v. 157(6-8), p. 1059-1079, 2000.
    Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M. and Chang, K.-T., Landslide inventory maps: New tools for an old problem, Earth-Science Reviews, v. 112(1), p. 42-66, 2012.
    Hungr, O., Evans, S., Bovis, M. and Hutchinson, J., A review of the classification of landslides of the flow type, Environmental & Engineering Geoscience, v. 7(3), p. 221-238, 2001.
    Hutchinson, J. N., General Report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology., Proceedings, Fifth International Symposium on Landslides (Ed: Bonnard, C.), v. 1(p. 3-36, 1988.
    Joyce, K. E., Belliss, S. E., Samsonov, S. V., McNeill, S. J. and Glassey, P. J., A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters, Progress in Physical Geography, v. 33(2), p. 183, 2009.
    Kanungo, D. P., Arora, M. K., Sarkar, S. and Gupta, R. P., Landslide Susceptibility Zonation (LSZ) Mapping - A Review, Journal of South Asia Disaster Studies, v. 2(p. 81-105, 2009.
    Keefer, D. K., Investigating landslides caused by earthquakes–a historical review, Surveys in Geophysics, v. 23(6), p. 473-510, 2002.
    Keeper, D. K., Landslides caused by earthquakes, Geological Society of America Bulletin, v. 95(4), p. 406-421, 1984.
    Khazai, B. and Sitar, N., Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events, Engineering Geology, v. 71(1), p. 79-95, 2004.
    Kumar, K. V., Martha, T. and Roy, P., Mapping damage in the Jammu and Kashmir caused by 8 October 2005 Mw 7.3 earthquake from the Cartosat–1 and Resourcesat–1 imagery, International Journal of Remote Sensing, v. 27(20), p. 4449-4459, 2006.
    Lee, C.-T., Huang, C.-C., Lee, J.-F., Pan, K.-L., Lin, M.-L. and Dong, J.-J., Statistical approach to storm event-induced landslides susceptibility, Natural Hazards and Earth System Sciences, v. 8(p. 941-960, 2008.
    Lin, C.-W., Shieh, C.-L., Yuan, B.-D., Shieh, Y.-C., Liu, S.-H. and Lee, S.-Y., Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan, Engineering Geology, v. 71(1-2), p. 49-61, 2004.
    Liu, C. C., Processing of FORMOSAT-2 daily revisit imagery for site surveillance, Geoscience and Remote Sensing, IEEE Transactions on, v. 44(11), p. 3206-3214, 2006.
    Liu, C. C. and Chen, P. L., Automatic extraction of ground control regions and orthorectification of remote sensing imagery, Optics Express, v. 17(10), p. 7970-7984, 2009.
    Liu, C. C., Liu, J. G., Lin, C. W., Wu, A. M., Liu, S. H. and Shieh, C. L., Image processing of FORMOSAT‐2 data for monitoring the South Asia tsunami, International Journal of Remote Sensing, v. 28(13-14), p. 3093-3111, 2007.
    Mantovani, F., Soeters, R. and Van Westen, C., Remote sensing techniques for landslide studies and hazard zonation in Europe, Geomorphology, v. 15(3), p. 213-225, 1996.
    McKean, J. and Roering, J., Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry, Geomorphology, v. 57(3), p. 331-351, 2004.
    Metternicht, G., Hurni, L. and Gogu, R., Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments, Remote sensing of Environment, v. 98(2-3), p. 284-303, 2005.
    Nichol, J. E., Shaker, A. and Wong, M. S., Application of high-resolution stereo satellite images to detailed landslide hazard assessment, Geomorphology, v. 76(1), p. 68-75, 2006.
    Pistocchi, A., Luzi, L. and Napolitano, P., The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods, Environmental Geology, v. 41(7), p. 765-775, 2002.
    Rapolla, A., Paoletti, V. and Secomandi, M., Seismically-induced landslide susceptibility evaluation: application of a new procedure to the island of Ischia, Campania Region, Southern Italy, Engineering Geology, v. 114(1), p. 10-25, 2010.
    Rossi, M., Witt, A., Guzzetti, F., Malamud, B. D. and Peruccacci, S., Analysis of historical landslide time series in the Emilia‐Romagna region, northern Italy, Earth Surface Processes and Landforms, v. 35(10), p. 1123-1137, 2010.
    Sharpe, C. F. S., Landslides and related phenomena, Columbia University Press, 1938.
    Singhroy, V., SAR integrated techniques for geohazard assessment, Advances in Space Research, v. 15(11), p. 67-78, 1995.
    Singhroy, V., Mattar, K. and Gray, A., Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images, Advances in Space Research, v. 21(3), p. 465-476, 1998.
    Singhroy, V. and Molch, K., Characterizing and monitoring rockslides from SAR techniques, Advances in Space Research, v. 33(3), p. 290-295, 2004.
    Spiker, E. C. and Gori, P. L., National Landslide Hazards Mitigation Strategy, USGS, p. 00-450, 2000.
    TC4-ISSMGE, Manual for Zonation of Seismic Geotechnical hazards, Technical Committee for Earthquake Geotecnical Engineering, 1999.
    Van Westen, C., Rengers, N. and Soeters, R., Use of geomorphological information in indirect landslide susceptibility assessment, Natural Hazards, v. 30(3), p. 399-419, 2003.
    Varnes, D. J., Slope movement types and processes, Landslides, Analysis and Control. Transportation Research Board. Special Report, v. 176(p. 1978.
    Varnes, D. J., Landslide hazard zonation: a review of principles and practice, 1984.
    Varnes, D. J. and Slopes, t. I. A. E. G. C. o. L. O. M. M. o., Landslide hazard zonation: a review of principles and practice, v. p. 1984.
    Wang, W. N., Wu, H. L., Nakamura, H., Wu, S. C., Ouyang, S. and Yu, M. F., Mass movements caused by recent tectonic activity: The 1999 Chi‐chi earthquake in central Taiwan, Island Arc, v. 12(4), p. 325-334, 2003.
    Yalcin, A., GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena, v. 72(1), p. 1-12, 2008.
    王薏雯, 整合福衛二號高時間解析度和高空間解析度衛星影像與田間光譜資料監測水稻生長和預測產量, 成功大學地球科學系碩博士班學位論文, 2007.
    丘台光, 劇烈天氣監測系統QPESUMS之服務與應用, 國土資訊系統通訊, v. 61(p. 15-26, 2007.
    成功大學全球觀測與資料分析中心, 運用衛星影像於全島崩塌地判釋與災害分析期末報告, 2010.
    成功大學全球觀測與資料分析中心, 多尺度遙測空間資訊資料建置及擴充維護計畫期中報告書, 2013.
    何春蓀, 台灣地質概論, 中華民國經濟部, p. 1-116, 1975.
    李錫堤, 山崩及土石流災害分析的方法學回顧與展望, 台灣公共工程學刊, v. 5(p. 2009.
    李錫堤, 費立沅, 李錦發, 林銘郎, 董家鈞, 張瓊文, 事件型山崩潛勢分析流程-以大甲溪流域為例, 流域地質與坡地災害研討會, p. 17, 2008.
    林彥享, 運用類神經網路進行地震誘發山崩之潛勢分析; Application of Neural Network to Landslide Susceptibility Analysis, 2003.
    林家慶, 應用福衛二號時間序列影像監測曾文水庫集水區崩塌地之時空變化, 成功大學地球科學系碩博士班學位論文, v. 2007 年), p. 2007.
    林暐翔, 極端降雨下崩塌潛勢分析-以陳有蘭溪為例, 中興大學土木工程學系所學位論文, v. 2012 年), p. 1-104, 2012.
    林恩如, 劉正千, 張智華, 鄭依凡 and 柯明勳, 運用福衛二號高時空分辨率多光譜影像於台灣全島崩塌地判釋與災害分析, 航測及遙測學刊, v. 17(1)(p. p15-35, 2013.
    張子瑩, 徐美玲, 暴雨與地震觸發崩塌發生區位之比較以陳有蘭溪流域為例, v. p. 2004.
    張崑宗, 高啟軒, 王主一, 劉進金, 暴雨型崩塌地自動判釋及特徵分析之研究, 航測及遙測學刊, v. 15(1), p. 79-95, 2010.
    許晃雄, 吳宜昭, 周佳, 陳正達, 陳永明, 盧孟明, 臺灣氣候變遷科學報告2011, 行政院國家科學委員會, p. 1-362, 2011.
    陳聯光, 林聖琪, 林又青, 王俞婷, 林祺岳, 陳如琳, 莫拉克颱風降雨與崩塌分佈特性探討, 中央氣象局天氣分析與預報研討會, 2010
    陳正改, 台灣的氣象災害與防災策略, 中華防災學刊, v. 3(2), p. 120-132, 2011.
    陳泊澧, 福爾摩沙衛星數值高程模型與正射影像產品之產製與精度評估, 國立成功大學:衛星資訊暨地球環境研究所碩士論文, 2009.
    渡正亮, 地すべりと岩運動, 2003.
    渡正亮, 小橋澄治, 地すべり・斜面崩壊の予知と対策, 山海堂, p. 260, 1987.
    楊孟學, 林明璋, 劉進金, 結合衛星影像與地形指標於山崩自動分類之研究, 航測及遙測學刊, v. 14(1), p. 2009.
    劉正千, 如何運用遙測資訊進行快速應變—莫拉克風災之經驗與建言, 大自然, v. 105(p. 2009.
    錢憲和, 台灣常見的由滑坡運動造成之地質災難之初步研究, v. p. 1999.
    謝正倫, 吳銘志, 林慶偉, 我國水土災害防救制度之研究, 行政院研究發展考核委員會, v. p. 2000.
    蘇苗彬, 陳毅輝, 方俊傑, 應用不安定指數法於坡地崩塌之潛勢分析, 水保技術, v. 4(1), p. 9-23, 2009.

    下載圖示 校內:2018-09-02公開
    校外:2018-09-02公開
    QR CODE