簡易檢索 / 詳目顯示

研究生: 林琮暉
Lin, Chung-Whei
論文名稱: 非平衡磁控濺鍍氮化鉻及氧化鉻薄膜之磨潤特性及車削、鑽削性能研究
The tribological characteristics and turning, drilling performance of Cr-N and Cr-O coatings deposited by unbalanced magnetron sputtering
指導教授: 蘇演良
Su, Y. L.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 89
中文關鍵詞: 非平衡磁控濺鍍氮化鉻磨潤特性氧化鉻
外文關鍵詞: closed field unbalanced magnetron sputtering, Cr-O, Cr-N, tribological characteristic
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用非平衡磁控濺鍍系統,濺鍍Cr-N及Cr-O鍍膜於高速鋼、矽晶片、微鑽針及捨棄式刀具。主要目的為探討鉻系鍍膜的機械性質、磨潤性質及切削性能。實驗主要分為兩部分:第一部分探討氣體流量及基材偏壓對於Cr-N、Cr-O鍍層機械性質的影響;第二部分探討高溫氧化處理對Cr2N鍍層機械性質的影響;最後選用較佳鍍層進行乾車削及微鑽孔試驗,以瞭解鉻系鍍膜披覆刀具之實際工作效能。
    由實驗結果可知,CrxNy鍍層於氮氣流量10 sccm及基材偏壓-40 V下,Cr2N鍍層擁有最高硬度值HK10g 2176及最佳耐磨耗性。Cr-O鍍層硬度隨著鍍層固溶氧含量提升而加大,Cr-O鍍層氧含量為20 at. %時有最佳硬度HK10g 2036,於氧含量為5 at. %至15 at. %時具有較佳抗磨
    耗性質,於氧含量為3 at. %時則有較低摩擦係數表現。Cr2N鍍層經高溫氧化處理後,硬度可提升至HK10g 3500以上,且耐磨耗性亦有顯著提升。由實際切削、鑽削實驗的結果得知,高溫氧化處理之Cr2N鍍層能有效降低車刀及鑽針磨耗量,可降低3倍車刀磨耗及約10倍之鑽針
    磨耗量。

    In this study, Cr-N and Cr-O coatings were deposited on the SKH51 disks, silicon wafers, micro-drills and indexable inserts by closed field unbalanced magnetron system. The main purpose of this study is to research mechanical, tribological properties and cutting performance of the Cr-N and Cr-O coatings. The experiment is divided into two stages. In the first stage, the effects of gas flow rate and substrate bias voltage on the mechanical properties of Cr-N and Cr-O coatings were investigated. In the second stage, the effect of high temperature oxidation treatment on the mechanical properties of Cr2N coatings was investigated. Finally, the actual cutting performances of the optimal coatings from the first two stages were understood in the turning and micro-drilling tests.
    The results reveal that the highest hardness HK10g 2176 and the best wear resistance were performed by Cr2N coatings at the nitrogen gas flow rate 10 sccm and substrate bias voltage -40 V. The hardness of Cr-O coatings was increased by increasing oxygen contents. High hardness
    value HK10g 2036 was performed by Cr-O coatings when oxygen contentis 20 at. %. The best wear performance was achieved by Cr-O coatings when oxygen content is 5 to 15 at. %. The lowest friction coefficient was performed by Cr-O coatings when oxygen content is 3 at. %. After high temperature oxidation treatment, the hardness and wear resistance of Cr2N coatings were apparently increasing. Wear from cutting tools can be reduced by high temperature oxidation treatment Cr2N thin films coated on inserts and drills during actually turning and micro-drilling tests. About three times insert wear and ten times drill wear can be reduction.

    授權書…………………………………………………………………………………... Ⅰ 口試合格證明…………………………………………………………………………... Ⅱ 摘要………………………………………………………………………………........... Ⅲ Abstract…………………………………………………………………………………. Ⅳ 誌謝……………………………………………………………………………………... Ⅴ 總目錄 ……………………………………………………….…………………….. Ⅵ 表目錄 ……………………………………………………….…………………….. Ⅹ 圖目錄 ……………………………………………………………………………... XI 第一章 緒論………………………………………………….…………………….. 1 1-1前言………………………………………….………………………… 1 1-2研究動機…………………………………….………………………… 2 第二章 理論探討與文獻回顧……………………………….…………………….. 3 2-1薄膜形成技術………………………………….……………………… 3 2-1-1濺鍍參數與薄膜成長條件、結構及物性關係………………….. 4 2-2濺鍍理論………………….…………………………………………… 6 2-2-1封閉式非平衡磁控濺鍍………………………………………….. 7 2-3鉻系鍍層介紹……………………………………................................. 8 第三章 實驗方法與步驟…………………………………….…………………….. 10 3-1實驗目的……………………………………….……………………… 10 3-2實驗流程……………………………………….……………………… 10 3-3實驗方法與規劃…………………………………................................. 11 3-3-1 濺鍍參數與鍍膜安排.................................................................... 11 3-3-2 實驗材料………………………………………………………… 11 3-3-3 成分分析………………………………………………………… 12 3-3-4 結構分析………………………………………………………… 13 3-3-5 硬度實驗………………………………………………………… 13 3-3-6 附著性實驗……………………………………………………… 13 3-3-7 磨耗實驗………………………………………………………… 14 3-3-8 高溫氧化實驗…………………………………………………… 15 3-3-9 車削實驗……………………………………………………….... 15 3-3-10 鑽削實驗………………………………….................................. 16 3-3-11 表面、斷面和磨耗型態分析………………………………….. 17 3-4 實驗設備……………………………………………………………… 17 第四章 Cr-N、Cr-O鍍層實驗結果與討論……………………………………….. 19 4-1 Cr-N鍍層-氮氣流量變化對於鍍膜的影響………………………….. 19 4-1-1鍍膜基本性質……………………………..................................... 19 4-1-1-1鍍膜微結構………………………………………………… 19 4-1-1-2鍍膜表面粗糙度…………………………………………… 20 4-1-1-3鍍膜厚度及成分分析……………………………………… 20 4-1-1-4微硬度實驗………………………………………………… 21 4-1-2鍍膜附著性…………………………….......................................... 21 4-1-2-1壓痕試驗…………………………………………………… 21 4-1-2-2刮痕試驗…………………………………………………… 21 4-1-3鍍層磨潤性質…………………………………………………….. 22 4-1-3-1 CrxNy鍍層與AISI 1045中碳鋼圓柱對磨……………….. 22 4-1-3-2 CrxNy鍍層與AISI 52100鉻鋼球對磨……………………. 22 4-1-3-3磨耗機構…………………………………………………... 23 4-1-4 CrxNy鍍層表面及斷面SEM觀察………………………………. 23 4-1-5小結……………………………………………………………….. 23 4-2 Cr-N鍍層-基材偏壓變化對於鍍膜的影響………………………….. 24 4-2-1鍍膜基本性質……………………………..................................... 24 4-2-1-1鍍膜微結構………………………………………………… 24 4-2-1-2鍍膜厚度及成分分析……………………………………… 24 4-2-1-3鍍膜表面粗糙度…………………………………………… 25 4-2-1-4鍍膜硬度…………………………………………………… 25 4-2-1-5基材效應對於微硬度實驗影響探討……………………… 25 4-2-2鍍膜附著性……………………………......................................... 26 4-2-2-1刮痕試驗…………………………………………………… 26 4-2-2-2壓痕試驗…………………………………………………… 26 4-2-3鍍層磨潤性質…………………………………………………….. 27 4-2-3-1 Cr2N鍍層與AISI 1045中碳鋼圓柱對磨………………… 27 4-2-3-2 Cr2N鍍層與AISI 52100鉻鋼球對磨……………………. 27 4-2-4鍍層SEM表面及斷面觀察……………………………………… 27 4-2-5小結………………………………………………………………. 27 4-3 Cr-O鍍層-氧氣流量變化對於鍍膜的影響………………………….. 28 4-3-1鍍膜基本性質……………………………...................................... 28 4-3-1-1鍍膜微結構………………………………………………… 28 4-3-1-2鍍膜厚度及成分分析……………………………………… 28 4-3-1-3鍍膜微硬度………………………………………………… 29 4-3-1-4鍍膜表面粗糙度…………………………………………… 29 4-3-2鍍膜附著性……………………………......................................... 29 4-3-2-1壓痕試驗…………………………………………………… 29 4-3-2-2刮痕試驗…………………………………………………… 30 4-3-3鍍層磨潤性質…………………………………………………….. 30 4-3-3-1 Cr-O鍍層與AISI 1045中碳鋼圓柱對磨………………… 30 4-3-3-2 Cr-O鍍層與AISI 52100鉻鋼球對磨…………………….. 31 4-3-4磨耗機構………………………………………………………….. 31 4-3-4-1 Cr-O鍍層與AISI 1045中碳鋼圓柱對磨………………… 31 4-3-4-2 Cr-O鍍層與AISI 52100鉻鋼球對磨…………………….. 31 4-3-5 SEM表面及斷面觀察………………………................................. 32 4-3-6小結……………………………………………………………….. 32 4-4 Cr2N鍍層高溫氧化實驗結果與討論………………………………… 33 4-4-1鍍膜基本性質……………………………...................................... 33 4-4-1-1鍍膜微結構………………………………………………… 33 4-4-1-2 Cr2N鍍層經熱處理之顏色變化及附著情形…………….. 33 4-4-1-3鍍膜成分分析……………………………………………… 34 4-4-1-4鍍膜硬度…………………………………………………… 35 4-4-2鍍膜附著性…………………………….......................................... 35 4-4-2-1壓痕試驗…………………………………………………… 35 4-4-2-2刮痕試驗…………………………………………………… 35 4-4-3磨潤性質…………………………………………………………. 36 4-4-3-1 高溫氧化處理Cr2N鍍層與AISI 1045中碳鋼圓柱對磨... 36 4-4-3-2 經高溫氧化處理Cr2N鍍層與AISI 52100鉻鋼球對磨…. 36 4-4-3-3磨耗機構…………………………………………………... 36 4-4-4 SEM表面及斷面觀察………………………................................. 37 4-4-5小結……………………………………………………………….. 37 4-5 PCB微鑽削實驗…………………………………................................. 38 4-6乾車削實驗………………………………………................................. 39 第五章 結論與未來展望…………………………………………………………... 40 5-1結論……………………………………………………………………. 40 5-2未來展望………………………………………………………………. 41 第六章 參考文獻…………………………………………………………………... 42 表目錄 Table 3-1 Deposition parameters of CrxNy coatings……………………… 45 Table 3-2 Deposition parameters of Cr2N series of coatings....................... 45 Table 3-3 Deposition parameters of Cr-O coatings………………………. 45 Table 3-4 Chemical composition (wt. %) of AISI 1045 cylinder, SKH51 disk and AISI 52100 ball............................................................. 46 Table 3-5 SRV wear test parameters............................................................ 46 Table 3-6 Heat treatment experimental detail for Cr2N coatings…………. 46 Table 4-1 The elements of CrxNy coatings.................................................. 47 Table 4-2 Scratch test results. (CrxNy coatings).......................................... 47 Table 4-3 Estimated CrxNy coatings wear properties by scratch test results………………………………………………………...... 47 Table 4-4 The Effects of indenter depth on the knoop microhardness of the Cr2N coatings. (SKH51 disk)................................................ 48 Table 4-5 The effects of substrate bias on scratch test results of Cr2N coatings........................................................................................ 48 Table 4-6 The effects of indenter depth on the knoop microhardness of Cr-O coatings. (load=10 gf) (SKH51 disk)……………………. 48 Table 4-7 Scratch test results. (Cr-O coatings)............................................ 49 Table 4-8 Estimated Cr-O coatings wear properties by scratch test results 49 Table 4-9 EDS analysis result of Cr2N coatings after heat treatment. (SKH51 disk)............................................................................... 49 Table 4-10 Scratch test results. (Cr2N coatings after heat treatment)……… 50 Table 4-11 Scratch test results. (Cr2N coated on SKH51 disk after heat treatment)……………………………………………………… 50 圖目錄 圖2-1 傳統磁控與非平衡磁控濺鍍示意圖................................................ 51 圖2-2 Cr-N系列相圖.................................................................................... 51 圖3-1 實驗流程............................................................................................ 52 圖3-2 KD-550U封閉式非平衡磁控濺鍍系統(主腔體)........................ 53 圖3-3 KD-550U封閉式非平衡磁控濺鍍系統(控制系統).................... 53 圖3-4 KD-550U封閉式非平衡磁控濺鍍系統(腔體內部構造示意圖)… 54 圖3-5 壓痕破裂型態示意圖........................................................................ 54 圖3-6 刮痕測試機台示意圖........................................................................ 55 圖3-7 (a) SRV磨耗測試機 (b) 上試件夾具 (c) 下試件磨痕類型.......... 56 圖3-8 車刀磨耗型態及切削性能評估準則示意圖.................................... 57 圖3-9 PWB微鑽孔實驗示意圖 (a) 實驗架構示意圖 (b) 實驗參數...... 58 圖3-10 FR-4雙面板之單層疊構圖................................................................ 59 圖3-11 微鑽針磨耗評估準則........................................................................ 59 圖4-1 CrxNy鍍膜之XRD繞射圖................................................................ 60 圖4-2 CrxNy鍍膜之元素含量與厚度的關係 (GDS分析)………………. 61 圖4-3 氮氣流量與CrxNy鍍膜硬度的關係 (SKH51基材)………………. 61 圖4-4 CrxNy鍍膜之SRV線磨耗試驗結果 (a) 50N, (b) 100N…………... 62 圖4-5 CrxNy鍍膜之SRV 點磨耗試驗結果 (load =10 N)…….................. 63 圖4-6 (a) N10鍍層表面磨痕形貌(與AISI 1045對磨) (b) 方形區域放 大圖 (c) 方形區域之EDS分析…………………………………... 64 圖4-7 AISI 1045圓柱表面磨痕(與N10鍍層對磨) (b) 方形區域 放大圖(c) 方形區域之EDS分析…………………………………. 65 圖4-8 CrxNy鍍層之表面與斷面SEM照片................................................ 66 圖4-9 Cr2N鍍層之XRD繞射分析圖......................................................... 67 圖4-10 Cr2N鍍膜之元素含量與厚度的關係 (GDS分析)…….................. 67 圖4-11 基材偏壓與Cr2N鍍膜硬度的關係(SKH51基材)………………… 68 圖4-12 基材偏壓對於SRV 線磨耗試驗磨耗深度及摩擦係數的影響 (a)50N , (b)100N................................................................................. 69 圖4-13 基材偏壓對於SRV點磨耗試驗磨耗深度及摩擦係數的影響........ 70 圖4-14 基材偏壓對於Cr2N鍍膜表面形貌及斷面結構的影響................... 71 圖4-15 Cr-O鍍膜XRD繞射結果.................................................................. 72 圖4-16 Cr-O鍍膜元素含量與膜厚的關係 (GDS分析)………................... 72 圖4-17 Cr-O鍍膜微硬度與氧含量(GDS分析)關係.................................... 73 圖4-18 Cr-O鍍膜SRV線磨耗試驗結果 (a)50 N , (b)100 N……………... 74 圖4-19 Cr-O鍍層SRV 點磨耗試驗結果...................................................... 75 圖4-20 Cr-O鍍層表面及斷面SEM照片………………………………….. 76 圖4-21 熱處理Cr2N鍍膜之XRD繞射結果................................................. 77 圖4-22 熱處理Cr2N鍍膜之硬度值............................................................... 77 圖4-23 Cr2N鍍層經熱處理之刮痕摩擦係數圖............................................ 78 圖4-24 熱處理Cr2N鍍膜之SRV線磨耗結果 (load=100 N)….................. 79 圖4-25 熱處理Cr2N鍍膜之SRV點磨耗結果 (load=10 N)………………. 79 圖4-26 (a) HT1B disk線磨痕,(b)磨痕之EDS成分分析, (C)磨痕表面形 貌量測................................................................................................ 80 圖4-27 (a) HT2B disk線磨痕, (b)磨痕之EDS成分分析, (C)磨痕表面形 貌量測................................................................................................ 81 圖4-28 (a) HT3B disk線磨痕, (b)磨痕之EDS成分分析, (C)磨痕表面形 貌量測................................................................................................ 82 圖4-29 (a) AISI 1045上試件磨痕, (b) EDS成分分析................................. 83 圖4-30 (a) HT2B disk點磨痕, (b)方形區域放大, (C)磨痕表面形貌量測 (腐蝕前), (d)磨痕表面形貌量測(腐蝕後)........................................ 84 圖4-31 熱處理Cr2N鍍膜SEM照片 (a)HT1B表面, (b)HT2B表面, (c)HT3B表面, (d)HT1A斷面, (e)HT1B斷面, (f)HT2A斷面.......... 85 圖4-32 PCB微鑽削實驗結果 (2000孔)…………………………………... 86 圖4-33 高溫氧化處理Cr2N鍍層披覆微鑽針SEM圖 (2000孔) (a)未鍍鑽針之磨耗面, (b)熱處理Cr2N鍍層鑽針磨耗面, (c)熱處 理Cr2N鍍層鑽針表面元素分析(EDS)……………………………. 87 圖4-34 A05鍍層披覆微鑽針之SEM圖 (2000孔)……………………….. 88 圖4-35 車削實驗結果.................................................................................... 89

    1. 金原粲, 白木靖寬, 吉田真史, 薄膜工程學, 2004, p1-7~1-13.
    2. B. Window, Surf. Coat. Technol. 71 (1995) 93.
    3. Teer DG, US Patent No. 5 556 519.
    4. P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159.
    5. B. Navinsek, P. Panjan, I. Milosev, Surf. Coat. Technol. 97 (1997)
    182.
    6. C. Rebholz, H. Ziegele, A. Leyland, A. Matthews, Surf. Coat.
    Technol. 115 (1999) 222.
    7. J.–N. Tu, J.-G. Duh, S.-Y. Tsai, Surf. Coat. Technol. 133/134 (2000)
    181.
    8. Lotova, R.G. Vitchev, B. Blanpain, Surf. Interf. Anal. 30 (2000) 544.
    9. D.-Y. Wang, K.-W. Weng, C.-L. Cheng, W.-Y. Ho, Surf. Coat.
    Technol. 120/121 (1999) 622.
    10. J. Almer, M. Oden, G. Hakansson, Thin Solid Folms 385 (2001)
    190.
    11. E. Lugscheider, O. Knotek, C. Barimani, S. Guerreiro, H.K.
    Zimmeremann, Surf. Coat. Technol. 94 (1997) 416.
    12. H. Schulz, E. Bergmann, Surf. Coat. Technol. 50 (1991) 53.
    13. G. V. Samsonov, in: The Oxide Handbook, 2nd edition, IFI/Plenum,
    New York, 1982, p. 192, 195.
    14. A.S. Kao, M.F. Doerner, V.J. Novotny, J. Appl. Phys. 66 (1989)
    5315.
    15. B. Bhushan, G.S. Theunissen, X. Li, Thin Solid Films 311 (1997)
    67.
    16. C.S. Cheng, H. Gomi, H. Sakata, Phys. Stat. Sol. (a) 155 (1996)
    417.
    17. A.K. Abass, E.M. Jaboori, Phys. Stat. Sol. (a) 116 (1989) K111.
    18. P. Panjan, B. Navinsek, A. Cvelbar, B. Zorko, A. Zalar, Thin Solid
    Films 343-344 (1999) 265.
    19. S.B. Sant, K.S. Gill, Surf. Coat. Technol. 68-69 (1994) 152.
    20. Y. Otani, S. Hoffmann, Thin Solid Films 287 (1996) 188.
    21. P. Ballhause, B. Hensel, A. Rost, H. Schussler, Mater. Sci .Eng.
    A163 (1993) 193.
    22. A. Tricoteaux, P.Y. Jouan, J.D. Guerin, J. Martinez, A. Djouadi, Surf.
    Coat. Technol. 174-175 (2003) 440.
    23. Z.P. Huang, Y. Sun, Wear 173 (1994) 13.
    24. L. Cunha, M. Andrischky, K. Pischow, Z. Wang, A. Zarychta, A.S.
    Miranda, A.M. Cunha, Surf. Coat. Technol. 153 (2002) 160.
    25. G. Bertrand, C. Savall, C. Meunier, Surf. Coat. Technol. 96 (1997)
    323.
    26. Y.L. Su, S.H. Yao, C.T. Wu, Wear 199 (1996) 132-141.
    27. Y.L. Su, S.H. Yao, Z.L. Leu, C.S. Wei, C.T. Wu, Wear 213 (1997)
    165-174.
    28. Y.L. Su, S.H. Yao, Wear 205 (1997) 112-119.
    29. L. Hultman, Vacuum 57 (2001) 1.
    30. D.A. Glocker, S.I. Shat, Handbook of Thin Film Process Technology,
    Institute of Physics, Wilmington, Delaware, 1995.
    31. P. Hones, M. Diserens, F. Levy, Surf. Coat. Technol. 120-121 (1999)
    277-283.
    32. G. Contoux, F. Cosset, A. Celerier, J. Machet, Thin Solid Films 292
    (1997) 75-84.
    33. St. Collard, H.Kupfer, G. Hecht, W. Hoyer, H. Moussaoui, Surf.
    Coat. Technol. 112 (1999) 181-184.
    34. Da-Yung Wang, Jian-Hong Lin, Wei-Yu Ho, Thin Solid Films 332
    (1998) 295-299.
    35. A.E. McHale (Ed.), Phase Equilibria Diagrams, Borides Carbides
    and Nitrides, vol. X, The American Ceramic Society, Westerville,
    OH, 1994, p.415.
    36. G. Wei, A. Rar, J.A. Barnard, Thin Solid Films 398-399 (2001)
    460-464.
    37. S. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, C. Metaxa,
    Surf. Coat. Technol. 180-181 (2004) 637-641
    38. A. Barata, L. Cunha, C. Moura, Thin Solid Films 198-399 (2001)
    501-506.
    39. S. Ortmann, A. Savan, Y. Gerbig, H. Haefke, Wear 254 (2003)
    1099-1105.
    40. Zenghu Han, Jiawan Tian, Qianxi Lai, Xiaojiang Yu, Geyang Li,
    Surf. Coat. Technol. 162 (2003) 189-193.
    41. Kyung H. Nam, Min J. Jung, Jeon G. Han, Surf. Coat. Technol. 131
    (2000) 222-227.
    42. Jui-Neng Tu, Jenq-Gong Duh, Shu-Tueh Tsai, Surf. Coat. Technol.133-134 (2000) 181-185.
    43. J.W. Seok, N.M. Jadeed, R.Y. Lin, Surf. Coat. Technol. 138 (2001)
    14-22.
    44. B. Navinsek, P. Panjan, Surf. Coat. Technol. 59 (1993) 244.
    45. S. Hofmann, H.A. Jehn, Werkst. Korros. 41 (1990) 756.
    46. B. Navinsek, P. Panjan, Thin Solid Films 223 (1993)4.
    47. I. Milosov, J.M. Abels, H.-H. Strehblow, B. Navinsek, M.
    Metikos-Hukovic, J. Vac. Sci. Technol. A 14 (1996) 2527.
    48. T. Kacsich, K.P. Lieb, Thin Solid Films 235 (1994) 4.
    49. T. Kacsich, K.P. Lieb, A. Schaper, O. Schulte, J.Phys. Condens.
    Matter 8 (1996) 10703.
    50. H. Ichimura, A. Kwana, J. Mater. Res. 9 (1994) 151.
    51. E. Huber, S. Hofmann, Surf. Coat. Technol. 68/69 (1994) 64.
    52. F. Esaka, H. Shimada, M. Imamura, N. Matshubayashi, T. Sato, A.
    Nishijima, A. Kawana, H. Ichimura, T. Kikuchi, K. Furuya, Thin
    Solid Films 281-282 (1996) 314.
    53. S.-C. Lee, W.-Y. Ho, F.D. Lai, Mater. Chem. Phys. 43 (1996) 266.
    54. O. Knotek, W. Bosch, M. Atzor, W.-D. Munz, D. Hoffmann, J.
    Goebel, High Temp.-High Press. 18 (1986) 435.
    55. F.D. Lai, J.K. Wu, Surf. Coat. Technol. 64 (1994) 53.
    56. J. Almer, M. Oden, L. Hultman, G. Hakansson, J. Vac. Sci. Technol.
    A18 (2000) 121.
    57. C. Heau, R.Y. Fillit, F. Vaux, F. Pascaretti, Surf. Coat. Technol.
    120/121 (1999) 200.
    58. W. Herr, E. Broszeit, Surf. Coat. Technol. 97 (1997) 335.
    59. T. Arai, H. Fujita, M. Watanable, Thin Solid Films 154 (1987) 391.
    60. S. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, C. Metaxa,
    Surf. Coat. Technol. 180-181 (2004) 637-641.
    61. William F. Smith, “Foundations of Materials Science and
    Engineering”, Mc Graw Hill, p. 208-210.
    62. S. Ranjana and D. N. William, Acta Materialia 50, 23 (2002).

    下載圖示 校內:2007-06-30公開
    校外:2007-06-30公開
    QR CODE