| 研究生: |
林琮暉 Lin, Chung-Whei |
|---|---|
| 論文名稱: |
非平衡磁控濺鍍氮化鉻及氧化鉻薄膜之磨潤特性及車削、鑽削性能研究 The tribological characteristics and turning, drilling performance of Cr-N and Cr-O coatings deposited by unbalanced magnetron sputtering |
| 指導教授: |
蘇演良
Su, Y. L. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 非平衡磁控濺鍍 、氮化鉻 、磨潤特性 、氧化鉻 |
| 外文關鍵詞: | closed field unbalanced magnetron sputtering, Cr-O, Cr-N, tribological characteristic |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用非平衡磁控濺鍍系統,濺鍍Cr-N及Cr-O鍍膜於高速鋼、矽晶片、微鑽針及捨棄式刀具。主要目的為探討鉻系鍍膜的機械性質、磨潤性質及切削性能。實驗主要分為兩部分:第一部分探討氣體流量及基材偏壓對於Cr-N、Cr-O鍍層機械性質的影響;第二部分探討高溫氧化處理對Cr2N鍍層機械性質的影響;最後選用較佳鍍層進行乾車削及微鑽孔試驗,以瞭解鉻系鍍膜披覆刀具之實際工作效能。
由實驗結果可知,CrxNy鍍層於氮氣流量10 sccm及基材偏壓-40 V下,Cr2N鍍層擁有最高硬度值HK10g 2176及最佳耐磨耗性。Cr-O鍍層硬度隨著鍍層固溶氧含量提升而加大,Cr-O鍍層氧含量為20 at. %時有最佳硬度HK10g 2036,於氧含量為5 at. %至15 at. %時具有較佳抗磨
耗性質,於氧含量為3 at. %時則有較低摩擦係數表現。Cr2N鍍層經高溫氧化處理後,硬度可提升至HK10g 3500以上,且耐磨耗性亦有顯著提升。由實際切削、鑽削實驗的結果得知,高溫氧化處理之Cr2N鍍層能有效降低車刀及鑽針磨耗量,可降低3倍車刀磨耗及約10倍之鑽針
磨耗量。
In this study, Cr-N and Cr-O coatings were deposited on the SKH51 disks, silicon wafers, micro-drills and indexable inserts by closed field unbalanced magnetron system. The main purpose of this study is to research mechanical, tribological properties and cutting performance of the Cr-N and Cr-O coatings. The experiment is divided into two stages. In the first stage, the effects of gas flow rate and substrate bias voltage on the mechanical properties of Cr-N and Cr-O coatings were investigated. In the second stage, the effect of high temperature oxidation treatment on the mechanical properties of Cr2N coatings was investigated. Finally, the actual cutting performances of the optimal coatings from the first two stages were understood in the turning and micro-drilling tests.
The results reveal that the highest hardness HK10g 2176 and the best wear resistance were performed by Cr2N coatings at the nitrogen gas flow rate 10 sccm and substrate bias voltage -40 V. The hardness of Cr-O coatings was increased by increasing oxygen contents. High hardness
value HK10g 2036 was performed by Cr-O coatings when oxygen contentis 20 at. %. The best wear performance was achieved by Cr-O coatings when oxygen content is 5 to 15 at. %. The lowest friction coefficient was performed by Cr-O coatings when oxygen content is 3 at. %. After high temperature oxidation treatment, the hardness and wear resistance of Cr2N coatings were apparently increasing. Wear from cutting tools can be reduced by high temperature oxidation treatment Cr2N thin films coated on inserts and drills during actually turning and micro-drilling tests. About three times insert wear and ten times drill wear can be reduction.
1. 金原粲, 白木靖寬, 吉田真史, 薄膜工程學, 2004, p1-7~1-13.
2. B. Window, Surf. Coat. Technol. 71 (1995) 93.
3. Teer DG, US Patent No. 5 556 519.
4. P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159.
5. B. Navinsek, P. Panjan, I. Milosev, Surf. Coat. Technol. 97 (1997)
182.
6. C. Rebholz, H. Ziegele, A. Leyland, A. Matthews, Surf. Coat.
Technol. 115 (1999) 222.
7. J.–N. Tu, J.-G. Duh, S.-Y. Tsai, Surf. Coat. Technol. 133/134 (2000)
181.
8. Lotova, R.G. Vitchev, B. Blanpain, Surf. Interf. Anal. 30 (2000) 544.
9. D.-Y. Wang, K.-W. Weng, C.-L. Cheng, W.-Y. Ho, Surf. Coat.
Technol. 120/121 (1999) 622.
10. J. Almer, M. Oden, G. Hakansson, Thin Solid Folms 385 (2001)
190.
11. E. Lugscheider, O. Knotek, C. Barimani, S. Guerreiro, H.K.
Zimmeremann, Surf. Coat. Technol. 94 (1997) 416.
12. H. Schulz, E. Bergmann, Surf. Coat. Technol. 50 (1991) 53.
13. G. V. Samsonov, in: The Oxide Handbook, 2nd edition, IFI/Plenum,
New York, 1982, p. 192, 195.
14. A.S. Kao, M.F. Doerner, V.J. Novotny, J. Appl. Phys. 66 (1989)
5315.
15. B. Bhushan, G.S. Theunissen, X. Li, Thin Solid Films 311 (1997)
67.
16. C.S. Cheng, H. Gomi, H. Sakata, Phys. Stat. Sol. (a) 155 (1996)
417.
17. A.K. Abass, E.M. Jaboori, Phys. Stat. Sol. (a) 116 (1989) K111.
18. P. Panjan, B. Navinsek, A. Cvelbar, B. Zorko, A. Zalar, Thin Solid
Films 343-344 (1999) 265.
19. S.B. Sant, K.S. Gill, Surf. Coat. Technol. 68-69 (1994) 152.
20. Y. Otani, S. Hoffmann, Thin Solid Films 287 (1996) 188.
21. P. Ballhause, B. Hensel, A. Rost, H. Schussler, Mater. Sci .Eng.
A163 (1993) 193.
22. A. Tricoteaux, P.Y. Jouan, J.D. Guerin, J. Martinez, A. Djouadi, Surf.
Coat. Technol. 174-175 (2003) 440.
23. Z.P. Huang, Y. Sun, Wear 173 (1994) 13.
24. L. Cunha, M. Andrischky, K. Pischow, Z. Wang, A. Zarychta, A.S.
Miranda, A.M. Cunha, Surf. Coat. Technol. 153 (2002) 160.
25. G. Bertrand, C. Savall, C. Meunier, Surf. Coat. Technol. 96 (1997)
323.
26. Y.L. Su, S.H. Yao, C.T. Wu, Wear 199 (1996) 132-141.
27. Y.L. Su, S.H. Yao, Z.L. Leu, C.S. Wei, C.T. Wu, Wear 213 (1997)
165-174.
28. Y.L. Su, S.H. Yao, Wear 205 (1997) 112-119.
29. L. Hultman, Vacuum 57 (2001) 1.
30. D.A. Glocker, S.I. Shat, Handbook of Thin Film Process Technology,
Institute of Physics, Wilmington, Delaware, 1995.
31. P. Hones, M. Diserens, F. Levy, Surf. Coat. Technol. 120-121 (1999)
277-283.
32. G. Contoux, F. Cosset, A. Celerier, J. Machet, Thin Solid Films 292
(1997) 75-84.
33. St. Collard, H.Kupfer, G. Hecht, W. Hoyer, H. Moussaoui, Surf.
Coat. Technol. 112 (1999) 181-184.
34. Da-Yung Wang, Jian-Hong Lin, Wei-Yu Ho, Thin Solid Films 332
(1998) 295-299.
35. A.E. McHale (Ed.), Phase Equilibria Diagrams, Borides Carbides
and Nitrides, vol. X, The American Ceramic Society, Westerville,
OH, 1994, p.415.
36. G. Wei, A. Rar, J.A. Barnard, Thin Solid Films 398-399 (2001)
460-464.
37. S. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, C. Metaxa,
Surf. Coat. Technol. 180-181 (2004) 637-641
38. A. Barata, L. Cunha, C. Moura, Thin Solid Films 198-399 (2001)
501-506.
39. S. Ortmann, A. Savan, Y. Gerbig, H. Haefke, Wear 254 (2003)
1099-1105.
40. Zenghu Han, Jiawan Tian, Qianxi Lai, Xiaojiang Yu, Geyang Li,
Surf. Coat. Technol. 162 (2003) 189-193.
41. Kyung H. Nam, Min J. Jung, Jeon G. Han, Surf. Coat. Technol. 131
(2000) 222-227.
42. Jui-Neng Tu, Jenq-Gong Duh, Shu-Tueh Tsai, Surf. Coat. Technol.133-134 (2000) 181-185.
43. J.W. Seok, N.M. Jadeed, R.Y. Lin, Surf. Coat. Technol. 138 (2001)
14-22.
44. B. Navinsek, P. Panjan, Surf. Coat. Technol. 59 (1993) 244.
45. S. Hofmann, H.A. Jehn, Werkst. Korros. 41 (1990) 756.
46. B. Navinsek, P. Panjan, Thin Solid Films 223 (1993)4.
47. I. Milosov, J.M. Abels, H.-H. Strehblow, B. Navinsek, M.
Metikos-Hukovic, J. Vac. Sci. Technol. A 14 (1996) 2527.
48. T. Kacsich, K.P. Lieb, Thin Solid Films 235 (1994) 4.
49. T. Kacsich, K.P. Lieb, A. Schaper, O. Schulte, J.Phys. Condens.
Matter 8 (1996) 10703.
50. H. Ichimura, A. Kwana, J. Mater. Res. 9 (1994) 151.
51. E. Huber, S. Hofmann, Surf. Coat. Technol. 68/69 (1994) 64.
52. F. Esaka, H. Shimada, M. Imamura, N. Matshubayashi, T. Sato, A.
Nishijima, A. Kawana, H. Ichimura, T. Kikuchi, K. Furuya, Thin
Solid Films 281-282 (1996) 314.
53. S.-C. Lee, W.-Y. Ho, F.D. Lai, Mater. Chem. Phys. 43 (1996) 266.
54. O. Knotek, W. Bosch, M. Atzor, W.-D. Munz, D. Hoffmann, J.
Goebel, High Temp.-High Press. 18 (1986) 435.
55. F.D. Lai, J.K. Wu, Surf. Coat. Technol. 64 (1994) 53.
56. J. Almer, M. Oden, L. Hultman, G. Hakansson, J. Vac. Sci. Technol.
A18 (2000) 121.
57. C. Heau, R.Y. Fillit, F. Vaux, F. Pascaretti, Surf. Coat. Technol.
120/121 (1999) 200.
58. W. Herr, E. Broszeit, Surf. Coat. Technol. 97 (1997) 335.
59. T. Arai, H. Fujita, M. Watanable, Thin Solid Films 154 (1987) 391.
60. S. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, C. Metaxa,
Surf. Coat. Technol. 180-181 (2004) 637-641.
61. William F. Smith, “Foundations of Materials Science and
Engineering”, Mc Graw Hill, p. 208-210.
62. S. Ranjana and D. N. William, Acta Materialia 50, 23 (2002).