| 研究生: |
張宏哲 Chang, Hung-Che |
|---|---|
| 論文名稱: |
聚偏二氟乙烯共熔鹽膠態電解質應用於鋰電池 PVdF Eutectogel Electrolyte for Lithium Battery |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 鋰電池 、共熔鹽溶劑 、高分子電解質 、界面改善 |
| 外文關鍵詞: | Lithium-metal batteries, Deep eutectic solvents, Polymer electrolyte, SEI improvement |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統鋰離子電池存在電池漏液、爆炸等風險,在行動裝置、電動交通工具普及的時代,一個安全且高能量密度的電池為大家所追求的目標。本論文研究共熔鹽與高分子形成之膠態電解質及其鋰電池應用,以高分子PVdF導入鋰鹽LiTFSI與N-Metylacetamide形成的共熔鹽溶劑製備成膠態電解質膜。藉由導離子度測試、線性掃描伏安法、循環伏安法來了解膠態電解質的電化學特性及穩定性,其導離子度在室溫可達6×10-4 S cm-1,電化學窗口在4.6 V (V vs. Li+/Li)。以磷酸鋰鐵(LFP)半電池在室溫充放電測試測試,充放電速率0.5C下可以達到電容量150 mAh g-1,0.1C能循環100圈以上,相較於同系統的液態共熔鹽電解質及共熔鹽膠態電解質,PVdF共熔鹽膠態電解質的電容量表現更高,但由於不穩定的SEI (Solid Electrolyte Interface)使半電池在更高速率充放電條件出現快速衰退的現象,在添加FEC (Fluoroethylene Carbonate)後,室溫充放電在1C有超過140 mAh g-1的電容量表現,0.2C循環壽命也能重複100圈以上,利用電化學阻抗分析、鋰枝晶測試及SEM證明添加FEC使負極鋰金屬上的SEI獲得改善。拉曼分析協助我們了解電解質中鋰離子的解離情況,加上DSC分析,我們提出PVdF膨潤的海綿狀膠態電解質模型,膠態電解質的熱穩定性佳,極限氧指數(Limiting Oxygen Index, LOI)為23,屬於耐燃材料,安全性較傳統液態電解質來的高。
We introduce PVdF-DES gel type electrolyte called “eutectogel”. The DES is base on lithium bis(trifluoromethane sulfone)imide (LiTFSI) and N-methylacetamide(MAc). Both of the DES and PVdF polymer are flame resistant, and make the gel electrolyte has good safe property. The optimized ratio of PVdF eutectogel achieve ionic conductivity exceeding 6×10-4 S cm-1 at room temperature. The electrochemical window of anodic stability is 4.6 V (V vs. Li+/Li). In the test of LiFePO4/Li half cell, the 0.5C charge-discharge capacity reach 160 mAh g-1 at room temperature, and the retention of 0.1C long term 120 cycle life test is 96.9%. However, due to the poor stability of Solid electrolyte interface (SEI), the capacity of LFP half cell decay rapidly under high C-rate charge and discharge. After adding FEC, LiFePO4/Li half cell can run 1C charge-discharge, and the capacity reach 140 mAh g-1 at room temperature. In long term cycling, Eutectogel with FEC additive also run over 100 cycles at 0.2C. Characterizing by impedance analysis, dendrite test and SEM of lithium meatal, we prove that SEI is improved by FEC additive. Raman spectrum, SEM and DSC also help us understand the morphology of eutectogel membrane, than the PVdf sponge gel electrolyte model is provided.
1. Petroleum, B., BP Statistical Review of World Energy Report. BP: London, UK 2019.
2. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
3. Lewis, G. N.; Keyes, F. G., The Potential of the Lithium Electrode. Journal of the American Chemical Society 1913, 35 (4), 340-344.
4. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194.
5. Wakihara, M., Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports 2001, 33 (4), 109-134.
6. Zhang, H.; Zhao, H.; Khan, M. A.; Zou, W.; Xu, J.; Zhang, L.; Zhang, J., Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. Journal of Materials Chemistry A 2018, 6 (42), 20564-20620.
7. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188-1194.
8. Ohzuku, T.; Ueda, A., Solid‐state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. Journal of The Electrochemical Society 1994, 141 (11), 2972.
9. Thomas, M.; Bruce, P.; Goodenough, J. B., Lithium mobility in the layered oxide Li1− xCoO2. Solid State Ionics 1985, 17 (1), 13-19.
10. Schipper, F.; Erickson, E. M.; Erk, C.; Shin, J.-Y.; Chesneau, F. F.; Aurbach, D., Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2. Journal of The Electrochemical Society 2017, 164 (1), A6220-A6228.
11. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
12. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature nanotechnology 2012, 7 (5), 310.
13. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
14. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chem. Mat. 2010, 22 (3), 587-603.
15. Hayashi, K.; Nemoto, Y.; Tobishima, S.-i.; Yamaki, J.-i., Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta 1999, 44 (14), 2337-2344.
16. Feuillade, G.; Perche, P., Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 1975, 5 (1), 63-69.
17. Yoshio, M.; Brodd, R. J.; Kozawa, A., Lithium-ion batteries. Springer: 2009; Vol. 1.
18. Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 2016, 22 (8), 1259-1279.
19. Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S. H.; Yang, X.; Sui, G., Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry 2019, 37, 126-142.
20. Huang, X.; Zeng, S.; Liu, J.; He, T.; Sun, L.; Xu, D.; Yu, X.; Luo, Y.; Zhou, W.; Wu, J., High-performance electrospun poly (vinylidene fluoride)/poly (propylene carbonate) gel polymer electrolyte for lithium-ion batteries. The Journal of Physical Chemistry C 2015, 119 (50), 27882-27891.
21. Meyer, W. H., Polymer electrolytes for lithium‐ion batteries. Advanced materials 1998, 10 (6), 439-448.
22. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 16030.
23. Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research 2014, 2, 25.
24. Bruce, P. G.; West, A., The A‐C Conductivity of Polycrystalline LISICON, Li2+ 2x Zn1− x GeO4, and a Model for Intergranular Constriction Resistances. Journal of The Electrochemical Society 1983, 130 (3), 662.
25. Yu, X.; Bates, J.; Jellison Jr, G.; Hart, F., A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride. Journal of the electrochemical society 1997, 144 (2), 524.
26. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S., Safer electrolytes for lithium‐ion batteries: state of the art and perspectives. ChemSusChem 2015, 8 (13), 2154-2175.
27. Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M., A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 2019, 1, 100005.
28. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chemical reviews 2014, 114 (21), 11060-11082.
29. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications 2001, (19), 2010-2011.
30. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 2003, (1), 70-71.
31. Francisco, M.; van den Bruinhorst, A.; Kroon, M. C., Low‐transition‐temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie international edition 2013, 52 (11), 3074-3085.
32. Chakrabarti, M. H.; Mjalli, F. S.; AlNashef, I. M.; Hashim, M. A.; Hussain, M. A.; Bahadori, L.; Low, C. T. J., Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renewable and Sustainable Energy Reviews 2014, 30, 254-270.
33. Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews 2012, 41 (21), 7108-7146.
34. Chowdhury, S. A.; Vijayaraghavan, R.; MacFarlane, D., Distillable ionic liquid extraction of tannins from plant materials. Green Chemistry 2010, 12 (6), 1023-1028.
35. Tang, B.; Zhang, H.; Row, K. H., Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of separation science 2015, 38 (6), 1053-1064.
36. Liang, H.; Li, H.; Wang, Z.; Wu, F.; Chen, L.; Huang, X., New binary room-temperature molten salt electrolyte based on urea and LiTFSI. The Journal of Physical Chemistry B 2001, 105 (41), 9966-9969.
37. Hu, Y.; Li, H.; Huang, X.; Chen, L., Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochemistry communications 2004, 6 (1), 28-32.
38. Chen, R.; Wu, F.; Liang, H.; Li, L.; Xua, B., Novel Binary Room-Temperature Complex Electrolytes Based on LiTFSI and Organic Compounds with Acylamino Group. Journal of The Electrochemical Society 2005, 152 (10), A1979-A1984.
39. Hu, Y.; Wang, Z.; Li, H.; Huang, X.; Chen, L., Spectroscopic and DFT studies to understand the liquid formation mechanism in the LiTFSI/acetamide complex system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 61 (9), 2009-2015.
40. Yang, C.-C.; Hsu, H.-Y.; Hsu, C.-R., Transport Properties of LiTFSI-Acetamide Room Temperature Molten Salt Electrolytes Applied in an Li-Ion Battery. Zeitschrift für Naturforschung A 2007, 62 (10-11), 639-646.
41. Li, S.; Cao, Z.; Peng, Y.; Liu, L.; Wang, Y.; Wang, S.; Wang, J.-Q.; Yan, T.; Gao, X.-P.; Song, D.-Y., Molecular dynamics simulation of LiTFSI− acetamide electrolytes: structural properties. The Journal of Physical Chemistry B 2008, 112 (20), 6398-6410.
42. Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics 2013, 15 (46), 20054-20063.
43. Boisset, A.; Jacquemin, J.; Anouti, M., Physical properties of a new Deep Eutectic Solvent based on lithium bis [(trifluoromethyl) sulfonyl] imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta 2013, 102, 120-126.
44. Geiculescu, O.; DesMarteau, D.; Creager, S.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M.; Aurbach, D.; Halalay, I., Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts. Journal of Power Sources 2016, 307, 519-525.
45. Zhang, H.; Xuan, X.; Wang, J.; Wang, H., Vibrational Spectroscopic Studies on Interactions in PEO− NaSCN− Urea Composites. The Journal of Physical Chemistry B 2004, 108 (5), 1563-1569.
46. Jiang, X.; Tan, B.; Zhang, X.; Ye, D.; Dai, H.; Zhang, X., Studies on the properties of poly (vinyl alcohol) film plasticized by urea/ethanolamine mixture. Journal of applied polymer science 2012, 125 (1), 697-703.
47. Wang, S.; Peng, X.; Zhong, L.; Jing, S.; Cao, X.; Lu, F.; Sun, R., Choline chloride/urea as an effective plasticizer for production of cellulose films. Carbohydrate polymers 2015, 117, 133-139.
48. Ye, Y.-S.; Rick, J.; Hwang, B.-J., Ionic liquid polymer electrolytes. Journal of Materials Chemistry A 2013, 1 (8), 2719-2743.
49. Sim, L.; Yahya, R.; Arof, A., Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis (trifluoromethane) sulfonimide and urea as deep eutectic solvent. Optical Materials 2016, 56, 140-144.
50. Joos, B.; Vranken, T.; Marchal, W.; Safari, M.; Van Bael, M. K.; Hardy, A. T., Eutectogels: A New Class of Solid Composite Electrolytes for Li/Li-Ion Batteries. Chem. Mat. 2018, 30 (3), 655-662.
51. Joos, B.; Volders, J.; da Cruz, R. R.; Baeten, E.; Safari, M.; Van Bael, M. K.; Hardy, A. T., Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes. Chem. Mat. 2020.
52. Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X.; Wang, T.; Wang, Y.; Kang, F.; Li, B.; Wang, G., Deep Eutectic Solvent‐Based Self‐Healing Polymer Electrolyte for Safe and Long‐Life Lithium Metal Batteries. Angewandte Chemie International Edition 2020.
53. Bajaj, P., Fire-retardant materials. Bulletin of Materials Science 1992, 15 (1), 67-76.
54. Jow, T. R.; Delp, S. A.; Allen, J. L.; Jones, J.-P.; Smart, M. C., Factors limiting Li+ charge transfer kinetics in Li-ion batteries. Journal of The Electrochemical Society 2018, 165 (2), A361.
55. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. Journal of Power Sources 2011, 196 (12), 5334-5341.
56. Denis, Y.; Fietzek, C.; Weydanz, W.; Donoue, K.; Inoue, T.; Kurokawa, H.; Fujitani, S., Study of LiFePO4 by cyclic voltammetry. Journal of The Electrochemical Society 2007, 154 (4), A253-A257.
57. Park, J.; Appiah, W. A.; Byun, S.; Jin, D.; Ryou, M.-H.; Lee, Y. M., Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries. Journal of Power Sources 2017, 365, 257-265.
58. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
59. Lassègues, J.-C.; Grondin, J.; Aupetit, C.; Johansson, P., Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. The Journal of Physical Chemistry A 2009, 113 (1), 305-314.
60. Choi, H.; Kim, H. W.; Ki, J.-K.; Lim, Y. J.; Kim, Y.; Ahn, J.-H., Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries. Nano Research 2017, 10 (9), 3092-3102.
61. Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I. A.; Wang, Q., Organic–inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. Journal of Materials Chemistry A 2017, 5 (34), 18012-18019.
62. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
63. Wang, L.; Ma, Y.; Qu, Y.; Cheng, X.; Zuo, P.; Du, C.; Gao, Y.; Yin, G., Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. Electrochimica Acta 2016, 191, 8-15.
64. Li, Y.; Lian, F.; Ma, L.; Liu, C.; Yang, L.; Sun, X.; Chou, K., Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1. 16 [Mn0. 75Ni0. 25] 0.84 O2 material. Electrochimica Acta 2015, 168, 261-270.
65. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394.
校內:2025-08-01公開