簡易檢索 / 詳目顯示

研究生: 張宏哲
Chang, Hung-Che
論文名稱: 聚偏二氟乙烯共熔鹽膠態電解質應用於鋰電池
PVdF Eutectogel Electrolyte for Lithium Battery
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 72
中文關鍵詞: 鋰電池共熔鹽溶劑高分子電解質界面改善
外文關鍵詞: Lithium-metal batteries, Deep eutectic solvents, Polymer electrolyte, SEI improvement
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統鋰離子電池存在電池漏液、爆炸等風險,在行動裝置、電動交通工具普及的時代,一個安全且高能量密度的電池為大家所追求的目標。本論文研究共熔鹽與高分子形成之膠態電解質及其鋰電池應用,以高分子PVdF導入鋰鹽LiTFSI與N-Metylacetamide形成的共熔鹽溶劑製備成膠態電解質膜。藉由導離子度測試、線性掃描伏安法、循環伏安法來了解膠態電解質的電化學特性及穩定性,其導離子度在室溫可達6×10-4 S cm-1,電化學窗口在4.6 V (V vs. Li+/Li)。以磷酸鋰鐵(LFP)半電池在室溫充放電測試測試,充放電速率0.5C下可以達到電容量150 mAh g-1,0.1C能循環100圈以上,相較於同系統的液態共熔鹽電解質及共熔鹽膠態電解質,PVdF共熔鹽膠態電解質的電容量表現更高,但由於不穩定的SEI (Solid Electrolyte Interface)使半電池在更高速率充放電條件出現快速衰退的現象,在添加FEC (Fluoroethylene Carbonate)後,室溫充放電在1C有超過140 mAh g-1的電容量表現,0.2C循環壽命也能重複100圈以上,利用電化學阻抗分析、鋰枝晶測試及SEM證明添加FEC使負極鋰金屬上的SEI獲得改善。拉曼分析協助我們了解電解質中鋰離子的解離情況,加上DSC分析,我們提出PVdF膨潤的海綿狀膠態電解質模型,膠態電解質的熱穩定性佳,極限氧指數(Limiting Oxygen Index, LOI)為23,屬於耐燃材料,安全性較傳統液態電解質來的高。

    We introduce PVdF-DES gel type electrolyte called “eutectogel”. The DES is base on lithium bis(trifluoromethane sulfone)imide (LiTFSI) and N-methylacetamide(MAc). Both of the DES and PVdF polymer are flame resistant, and make the gel electrolyte has good safe property. The optimized ratio of PVdF eutectogel achieve ionic conductivity exceeding 6×10-4 S cm-1 at room temperature. The electrochemical window of anodic stability is 4.6 V (V vs. Li+/Li). In the test of LiFePO4/Li half cell, the 0.5C charge-discharge capacity reach 160 mAh g-1 at room temperature, and the retention of 0.1C long term 120 cycle life test is 96.9%. However, due to the poor stability of Solid electrolyte interface (SEI), the capacity of LFP half cell decay rapidly under high C-rate charge and discharge. After adding FEC, LiFePO4/Li half cell can run 1C charge-discharge, and the capacity reach 140 mAh g-1 at room temperature. In long term cycling, Eutectogel with FEC additive also run over 100 cycles at 0.2C. Characterizing by impedance analysis, dendrite test and SEM of lithium meatal, we prove that SEI is improved by FEC additive. Raman spectrum, SEM and DSC also help us understand the morphology of eutectogel membrane, than the PVdf sponge gel electrolyte model is provided.

    摘要 I Extended abstract II 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1 - 1 前言 1 1 - 2 鋰電池介紹 3 1 - 3 鋰電池工作原理 4 1 - 4 鋰電池電極材料 5 1-4-1正極活物材料 6 1-4-2負極活物材料 8 1 - 5電解質 9 1-5-1液態電解質 10 1-5-2膠態電解質 11 1-5-3全固態電解質 13 1 - 6鋰電池劣化 15 第二章 文獻回顧 17 2 - 1共熔鹽(Deep eutectic solvents, DES)介紹 17 2 - 2共熔鹽電解質 19 第三章 實驗方法 25 3 - 1研究動機與目的 25 3 - 2實驗藥品與儀器設備 26 3 - 3正極極板製備 27 3 - 4共熔鹽膠態電解質膜製備 28 3 - 5實驗儀器分析 28 3-5-1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 28 3-5-2拉曼光譜分析(Raman Spectrum) 29 3-5-3熱重分析(Termogravimetric Analysis, TGA) 30 3-5-4差示掃描量熱法(Differential Scanning Calorimeter, DSC) 30 3-5-5極限氧指數(Limiting Oxygen Index, LOI) 31 3 - 6電池性能表現 31 3 - 7電化學分析 32 3-7-1電化學阻抗頻譜法(Electrochemistry Impedance Spectroscopy, EIS) 32 3-7-2導離子度(Ionic conductivity) 34 3-7-3線性掃描伏安法(Linear sweep voltammetry, LSV)與循環伏安法(Cyclic Voltammetry, CV) 35 3-7-4鋰枝晶測試 37 第四章 結果與討論 38 4-1膠態電解質電化學性質與電池表現 38 4-1-1共熔鹽比例影響 38 4-1-2高分子比例影響 40 4-1-3導離子度測試 41 4-1-4線性伏安法與循環伏安法測試 44 4-1-5電池性能表現 45 4-2電池界面分析與電解質形貌 47 4-2-1對稱電極分析 47 4-2-2鋰枝晶測試 49 4-2-3膠態電解質SEM分析 50 4-2-4拉曼光譜分析 53 4-2-5 差示掃描示熱分析 54 4-2-6 熱重分析 56 4-2-7極限氧指數 57 4-3添加劑改善界面穩定性 58 4-3-1電化學阻抗分析 58 4-3-2電池性能表現 60 4-3-3鋰枝晶測試 61 4-3-4膠態電解質電化學性質 62 4-3-5鋰負極表面SEM分析 64 第五章 結論與建議 66 參考文獻 67

    1. Petroleum, B., BP Statistical Review of World Energy Report. BP: London, UK 2019.
    2. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
    3. Lewis, G. N.; Keyes, F. G., The Potential of the Lithium Electrode. Journal of the American Chemical Society 1913, 35 (4), 340-344.
    4. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194.
    5. Wakihara, M., Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports 2001, 33 (4), 109-134.
    6. Zhang, H.; Zhao, H.; Khan, M. A.; Zou, W.; Xu, J.; Zhang, L.; Zhang, J., Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. Journal of Materials Chemistry A 2018, 6 (42), 20564-20620.
    7. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188-1194.
    8. Ohzuku, T.; Ueda, A., Solid‐state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. Journal of The Electrochemical Society 1994, 141 (11), 2972.
    9. Thomas, M.; Bruce, P.; Goodenough, J. B., Lithium mobility in the layered oxide Li1− xCoO2. Solid State Ionics 1985, 17 (1), 13-19.
    10. Schipper, F.; Erickson, E. M.; Erk, C.; Shin, J.-Y.; Chesneau, F. F.; Aurbach, D., Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2. Journal of The Electrochemical Society 2017, 164 (1), A6220-A6228.
    11. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
    12. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature nanotechnology 2012, 7 (5), 310.
    13. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
    14. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chem. Mat. 2010, 22 (3), 587-603.
    15. Hayashi, K.; Nemoto, Y.; Tobishima, S.-i.; Yamaki, J.-i., Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta 1999, 44 (14), 2337-2344.
    16. Feuillade, G.; Perche, P., Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 1975, 5 (1), 63-69.
    17. Yoshio, M.; Brodd, R. J.; Kozawa, A., Lithium-ion batteries. Springer: 2009; Vol. 1.
    18. Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 2016, 22 (8), 1259-1279.
    19. Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S. H.; Yang, X.; Sui, G., Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry 2019, 37, 126-142.
    20. Huang, X.; Zeng, S.; Liu, J.; He, T.; Sun, L.; Xu, D.; Yu, X.; Luo, Y.; Zhou, W.; Wu, J., High-performance electrospun poly (vinylidene fluoride)/poly (propylene carbonate) gel polymer electrolyte for lithium-ion batteries. The Journal of Physical Chemistry C 2015, 119 (50), 27882-27891.
    21. Meyer, W. H., Polymer electrolytes for lithium‐ion batteries. Advanced materials 1998, 10 (6), 439-448.
    22. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 16030.
    23. Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research 2014, 2, 25.
    24. Bruce, P. G.; West, A., The A‐C Conductivity of Polycrystalline LISICON, Li2+ 2x Zn1− x GeO4, and a Model for Intergranular Constriction Resistances. Journal of The Electrochemical Society 1983, 130 (3), 662.
    25. Yu, X.; Bates, J.; Jellison Jr, G.; Hart, F., A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride. Journal of the electrochemical society 1997, 144 (2), 524.
    26. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S., Safer electrolytes for lithium‐ion batteries: state of the art and perspectives. ChemSusChem 2015, 8 (13), 2154-2175.
    27. Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M., A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 2019, 1, 100005.
    28. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chemical reviews 2014, 114 (21), 11060-11082.
    29. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications 2001, (19), 2010-2011.
    30. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 2003, (1), 70-71.
    31. Francisco, M.; van den Bruinhorst, A.; Kroon, M. C., Low‐transition‐temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie international edition 2013, 52 (11), 3074-3085.
    32. Chakrabarti, M. H.; Mjalli, F. S.; AlNashef, I. M.; Hashim, M. A.; Hussain, M. A.; Bahadori, L.; Low, C. T. J., Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renewable and Sustainable Energy Reviews 2014, 30, 254-270.
    33. Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews 2012, 41 (21), 7108-7146.
    34. Chowdhury, S. A.; Vijayaraghavan, R.; MacFarlane, D., Distillable ionic liquid extraction of tannins from plant materials. Green Chemistry 2010, 12 (6), 1023-1028.
    35. Tang, B.; Zhang, H.; Row, K. H., Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of separation science 2015, 38 (6), 1053-1064.
    36. Liang, H.; Li, H.; Wang, Z.; Wu, F.; Chen, L.; Huang, X., New binary room-temperature molten salt electrolyte based on urea and LiTFSI. The Journal of Physical Chemistry B 2001, 105 (41), 9966-9969.
    37. Hu, Y.; Li, H.; Huang, X.; Chen, L., Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochemistry communications 2004, 6 (1), 28-32.
    38. Chen, R.; Wu, F.; Liang, H.; Li, L.; Xua, B., Novel Binary Room-Temperature Complex Electrolytes Based on LiTFSI and Organic Compounds with Acylamino Group. Journal of The Electrochemical Society 2005, 152 (10), A1979-A1984.
    39. Hu, Y.; Wang, Z.; Li, H.; Huang, X.; Chen, L., Spectroscopic and DFT studies to understand the liquid formation mechanism in the LiTFSI/acetamide complex system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 61 (9), 2009-2015.
    40. Yang, C.-C.; Hsu, H.-Y.; Hsu, C.-R., Transport Properties of LiTFSI-Acetamide Room Temperature Molten Salt Electrolytes Applied in an Li-Ion Battery. Zeitschrift für Naturforschung A 2007, 62 (10-11), 639-646.
    41. Li, S.; Cao, Z.; Peng, Y.; Liu, L.; Wang, Y.; Wang, S.; Wang, J.-Q.; Yan, T.; Gao, X.-P.; Song, D.-Y., Molecular dynamics simulation of LiTFSI− acetamide electrolytes: structural properties. The Journal of Physical Chemistry B 2008, 112 (20), 6398-6410.
    42. Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics 2013, 15 (46), 20054-20063.
    43. Boisset, A.; Jacquemin, J.; Anouti, M., Physical properties of a new Deep Eutectic Solvent based on lithium bis [(trifluoromethyl) sulfonyl] imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta 2013, 102, 120-126.
    44. Geiculescu, O.; DesMarteau, D.; Creager, S.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M.; Aurbach, D.; Halalay, I., Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts. Journal of Power Sources 2016, 307, 519-525.
    45. Zhang, H.; Xuan, X.; Wang, J.; Wang, H., Vibrational Spectroscopic Studies on Interactions in PEO− NaSCN− Urea Composites. The Journal of Physical Chemistry B 2004, 108 (5), 1563-1569.
    46. Jiang, X.; Tan, B.; Zhang, X.; Ye, D.; Dai, H.; Zhang, X., Studies on the properties of poly (vinyl alcohol) film plasticized by urea/ethanolamine mixture. Journal of applied polymer science 2012, 125 (1), 697-703.
    47. Wang, S.; Peng, X.; Zhong, L.; Jing, S.; Cao, X.; Lu, F.; Sun, R., Choline chloride/urea as an effective plasticizer for production of cellulose films. Carbohydrate polymers 2015, 117, 133-139.
    48. Ye, Y.-S.; Rick, J.; Hwang, B.-J., Ionic liquid polymer electrolytes. Journal of Materials Chemistry A 2013, 1 (8), 2719-2743.
    49. Sim, L.; Yahya, R.; Arof, A., Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis (trifluoromethane) sulfonimide and urea as deep eutectic solvent. Optical Materials 2016, 56, 140-144.
    50. Joos, B.; Vranken, T.; Marchal, W.; Safari, M.; Van Bael, M. K.; Hardy, A. T., Eutectogels: A New Class of Solid Composite Electrolytes for Li/Li-Ion Batteries. Chem. Mat. 2018, 30 (3), 655-662.
    51. Joos, B.; Volders, J.; da Cruz, R. R.; Baeten, E.; Safari, M.; Van Bael, M. K.; Hardy, A. T., Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes. Chem. Mat. 2020.
    52. Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X.; Wang, T.; Wang, Y.; Kang, F.; Li, B.; Wang, G., Deep Eutectic Solvent‐Based Self‐Healing Polymer Electrolyte for Safe and Long‐Life Lithium Metal Batteries. Angewandte Chemie International Edition 2020.
    53. Bajaj, P., Fire-retardant materials. Bulletin of Materials Science 1992, 15 (1), 67-76.
    54. Jow, T. R.; Delp, S. A.; Allen, J. L.; Jones, J.-P.; Smart, M. C., Factors limiting Li+ charge transfer kinetics in Li-ion batteries. Journal of The Electrochemical Society 2018, 165 (2), A361.
    55. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. Journal of Power Sources 2011, 196 (12), 5334-5341.
    56. Denis, Y.; Fietzek, C.; Weydanz, W.; Donoue, K.; Inoue, T.; Kurokawa, H.; Fujitani, S., Study of LiFePO4 by cyclic voltammetry. Journal of The Electrochemical Society 2007, 154 (4), A253-A257.
    57. Park, J.; Appiah, W. A.; Byun, S.; Jin, D.; Ryou, M.-H.; Lee, Y. M., Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries. Journal of Power Sources 2017, 365, 257-265.
    58. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
    59. Lassègues, J.-C.; Grondin, J.; Aupetit, C.; Johansson, P., Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. The Journal of Physical Chemistry A 2009, 113 (1), 305-314.
    60. Choi, H.; Kim, H. W.; Ki, J.-K.; Lim, Y. J.; Kim, Y.; Ahn, J.-H., Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries. Nano Research 2017, 10 (9), 3092-3102.
    61. Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I. A.; Wang, Q., Organic–inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. Journal of Materials Chemistry A 2017, 5 (34), 18012-18019.
    62. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
    63. Wang, L.; Ma, Y.; Qu, Y.; Cheng, X.; Zuo, P.; Du, C.; Gao, Y.; Yin, G., Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. Electrochimica Acta 2016, 191, 8-15.
    64. Li, Y.; Lian, F.; Ma, L.; Liu, C.; Yang, L.; Sun, X.; Chou, K., Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1. 16 [Mn0. 75Ni0. 25] 0.84 O2 material. Electrochimica Acta 2015, 168, 261-270.
    65. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394.

    無法下載圖示 校內:2025-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE