簡易檢索 / 詳目顯示

研究生: 陳品志
Chen, Pin-Zhi
論文名稱: 高折射率微縮電阻式記憶體整合矽光平台之多級非揮發性光記憶體
Multi-Level Non-Volatile Optical Memory Using High-Refractive-Index Miniaturized Resistive Memory Integrated with Silicon Photonic Platform
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 224
中文關鍵詞: 光記憶體矽光子多級光儲存電阻式記憶體波長循址
外文關鍵詞: Optical memory, Silicon photonics, Multi-Level optical storage, Resistive memory, Wavelength addressing
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧 (AI) 和數據驅動應用的迅速發展,對高速、高密度及高能效記憶體技術的需求日益迫切。然而,傳統馮·諾依曼 (von Neumann) 運算架構在處理器與記憶體之間存在物理分離,導致頻繁的資料搬移、延遲及功耗上升,嚴重限制系統效能。為了克服這些挑戰,記憶體內運算 (In-Memory Computing, IMC) 被視為具潛力的解決方案,可直接於記憶體陣列中進行資料處理,進而降低延遲與能耗。
    儘管中央處理器 (CPU)、圖形處理器 (GPU) 及張量處理器(TPU) 在高效能運算中扮演重要角色,隨著摩爾定律接近極限,其可擴展性逐漸受限。此外,電子資料傳輸本質上仰賴電荷載子的移動,易產生電阻性損耗及熱耗散。相較之下,光子運算以光子作為資訊載體,具備高速、寬頻與遠距傳輸的可靠性,能在低熱效應下實現高效率資料傳輸。
    本研究以矽光平台為基礎,開發多種高折射率微縮電阻式記憶體 (ReRAM) 光學整合元件,實現光非揮發性及多階調變功能,稱為「光記憶體」,亦可視為光憶阻器(Optical memristor)。整體設計共包含五種光記憶體結構,分別編碼為Optical Memory 1至Optical Memory 5。其中,Optical Memory 1至3整合於矽光波導,並以Optical Memory 3為重點,透過類crossbar結構將三顆微縮Ag/Al2O3/TiOx/ITO記憶體整合至光波導路徑,模擬多級存取行為。依據ReRAM導電燈絲的建立數,定義不同邏輯狀態L0 (初始)至L3。實驗顯示,在電源關閉條件下,相較於初始狀態,消光比隨導電燈絲數目增加而顯著提升,分別達6.34dB (76.7%)、11.73dB (93.2%) 及13.24dB (95.2%),且共振頻譜呈現明顯波長位移。
    由於Optical Memory 1至3並無波長循址能力,光頻譜的觀察主要依賴特定頻譜特徵辨識。為了實現多波長位址與平行資料傳輸,研究進一步將矽光被動元件設計為環形共振器,並採用多模干涉(MMI)結構的自成像原理,取代傳統以耦合間隙(gap)實現的直接耦合方式,以展寬頻寬並提升製程容忍度。
    所製作之50 µm、100 µm及串聯雙環結構,因MMI強耦合效應,皆展現較大的自由光譜範圍(FSR,9.91-16.86nm),有助於提升記憶體讀取分辨性與通道間隔,並具備較寬的半高全寬(FWHM),有利於提升資料吞吐量與操作穩定性。
    接著,進一步將Ag/Al2O3/BFO/ITO EFS結構微縮記憶體嵌入環形共振器進行光調變,其中Optical Memory 4採用單環100 µm結構,具備0.91nm的FWHM,為所有設計中頻寬表現最優,有助於在資料運行時支援高速訊號傳遞並保持低失真,因而選定作為被動元件整合平台。實驗顯示,相較初始狀態,透過銀離子燈絲調變可達8.81dB(86.8%)之消光比調製深度。另外,Optical Memory 5則採用串聯雙環結構整合ReRAM,實現多階可循址的非揮發性光記憶調變。相較最初狀態,L1及L2分別呈現4.72nm與5.49nm之波長偏移,並達6.44dB(77.3%)及8.73dB(86.6%)的消光比變化,其多階可波長循址的非揮發性光記憶特性與高效調變性能,為記憶資料處理提供了支持資料並行與高通量操作的潛力。

    With the rapid development of artificial intelligence(AI) and data-driven applications, the demand for high-speed, high-density, and energy-efficient memory technologies has become increasingly urgent. However, the traditional von Neumann computing architecture features a physical separation between processors and memory, resulting in frequent data transfers, increased latency, and rising power consumption, which severely limit overall system performance. To address these challenges, in-memory computing (IMC) has been regarded as a promising solution, enabling data processing directly within memory arrays to reduce latency and energy consumption.
    Although central processing units (CPUs), graphics processing units (GPUs), and tensor processing units (TPUs) play vital roles in high-performance computing, their scalability has gradually become constrained as Moore’s Law approaches its limit. Additionally, electronic data transmission inherently relies on the movement of charge carriers, which inevitably leads to resistive losses and thermal dissipation. In contrast, photonic computing employs photons as information carriers, offering high speed, broad bandwidth, and reliable long-distance transmission, thereby enabling high-efficiency data transfer with minimal thermal effects. This study utilizes a silicon photonic platform to develop various high-refractive-index miniaturized resistive memory(ReRAM)optical integration devices, realizing non-volatile and multi-level modulation capabilities referred to as “optical memory,” which can also be considered optical memristors. The overall design includes five optical memory structures, designated as Optical Memory 1 through Optical Memory 5. Among them, Optical Memory 1 to 3 are integrated on silicon waveguides, with Optical Memory 3 as the focus, employing a crossbar-like configuration to integrate three miniaturized Ag/Al2O3/TiOx/ITO memory cells along the waveguide path to emulate multi-level storage behavior. Different logic states, L0 (initial) through L3, were defined based on the number of conductive filaments formed in the ReRAM. Experimental results showed that under power-off conditions, compared to the initial state, the extinction ratio significantly increased with the number of conductive filaments, reaching 6.34 dB (76.7%), 11.73dB (93.2%), and 13.24dB (95.2%), respectively, accompanied by pronounced spectral wavelength shifts.
    Since Optical Memory 1 to 3 lack wavelength addressing capability, their optical spectra were primarily identified through characteristic spectral features. To achieve multi-wavelength addressing and parallel data transmission, this work further designed the silicon photonic passive elements as ring resonators and adopted a multimode interference (MMI) structure based on self-imaging principles to replace the conventional direct coupling gap, thereby broadening the operational bandwidth and enhancing fabrication tolerance.
    The fabricated 50 µm, 100 µm, and cascaded dual-ring structures exhibited larger free spectral ranges (FSRs) of 9.91-16.86nm due to the strong coupling effect of the MMI, which contributes to improved readout resolution, channel spacing, and wider full-width at half-maximum (FWHM), facilitating higher data throughput and operational stability.
    Subsequently, miniaturized Ag/Al2O3/BFO/ITO EFS memory devices were embedded within the ring resonators for optical modulation. Among them, Optical Memory 4 utilized a single 100 µm ring structure with an FWHM of 0.91nm, achieving the best bandwidth performance among all designs, thereby supporting high-speed signal transmission with low distortion during data operation, and was thus selected as the integration platform for passive devices. Experimental results demonstrated an extinction ratio modulation depth of 8.81dB (86.8%) relative to the initial state by modulating silver ion filaments. In addition, Optical Memory 5 employed a cascaded dual-ring structure integrated with ReRAM to realize multi-level, wavelength-addressable, non-volatile optical memory modulation. Compared to the initial state, L1 and L2 exhibited wavelength shifts of 4.72nm and 5.49nm, respectively, and extinction ratio changes of 6.44dB (77.3%) and 8.73dB (86.6%). These multi-level, wavelength-addressable non-volatile optical memory characteristics and efficient modulation performance provide promising potential for supporting parallel data processing and high-throughput operations.

    中文摘要 I SUMMARY III 誌謝 XXXII 目錄 XXXIV 表目錄 XXXVIII 圖目錄 XXXIX 第一章 緒論 1 1.1 矽光子積體電路 1 1.2 光學憶阻器 2 1.3 多級儲存技術與應用背景 5 1.4 MMI整合環形共振腔 6 1.5 研究動機 8 1.6 論文架構 11 1.7 參考文獻 13 第二章 矽光子多模干涉波導整合環共振腔 16 2.1 矽環形共振理論 16 2.2 理論光學參數介紹 25 2.2.1 共振波長(resonance wavelength) 25 2.2.2 自由光譜範圍(free spectral range) 25 2.2.3 半高全寬(full-width at half-maximum) 27 2.2.4 精細度(finesse) 28 2.2.5 品質因數 28 2.3 多模干涉波導原理 29 2.4 多模干涉整合環形共振腔 37 2.5 參考文獻 40 第三章 電阻式記憶體 43 3.1 記憶體技術概述與發展趨勢 43 3.2 電阻式記憶體(ReRAM) 46 3.2.1 電阻式記憶體(ReRAM)簡介 46 3.2.2 ReRAM切換模式分類 46 3.2.3 導電絲形成機制(VCM ECM)與切換行為 48 3.3 ITO 薄膜特性 50 3.4 高折射率材料之選擇 52 3.4.1 BiFeO3(BFO)材料特性分析 52 3.4.2 TiOx材料特性分析 53 3.4.3 等離子體效應與SPP模式分析 55 3.5 Elevated Film Stack(EFS)結構設計與場分布分析 59 3.6 參考文獻 62 第四章 元件設計與製程整合 65 4.1 元件製作概述 65 4.2 稜鏡耦合與光場模態強度模擬 66 4.2.1 稜鏡耦合量測 66 4.2.2 有效折射率法(EIM)模擬原理與分析 71 4.2.3 不同披覆層(ReRAM儲存層)之光場強度分佈 74 4.3 MMI整合Ring元件之結構設計與光學特性模擬 76 4.4 光罩圖形設計 80 4.4.1 多階光學記憶結構之光罩設計考量 80 4.4.2 嵌入式 ReRAM 於 MMI 環形共振腔之主/被動元件光罩設計 83 4.5 矽光被動元件製程流程 88 4.5.1 矽光被動元件製作流程圖 88 4.5.2 矽光被動元件製程結構示意圖與簡述 89 4.5.3 製程細節與關鍵參數說明 92 4.6 ReRAM製程流程 103 4.6.1 ReRAM 製程流程圖 104 4.6.2 ReRAM製程結構示意圖與簡述 106 4.7 元件整合製程流程 111 4.7.1 光記憶體元件架構與分類概述 111 4.7.2 矽光波導與多單元ReRAM製程整合示意圖與簡述 112 4.7.3 MMI-Ring結合ReRAM製程整合示意圖與簡述 115 4.8 製程整合技術演進與製作良率之優化歷程 118 4.8.1 矽蝕刻製程之演化歷程 118 4.8.2 ReRAM 薄膜參數細節整理與濺鍍製程優化 121 4.9 參考文獻 125 第五章 結果與討論 126 5.1 光記憶體量測實驗架構 126 5.2 電阻式記憶體(ReRAM)之電性量測結果 130 5.2.1 初步ReRAM 結構參數測試與後續整合考量 130 5.2.2 整合於光學平台之微縮 ReRAM 結構電性分析 131 5.3 被動元件之光學特性量測分析 141 5.3.1 矽光波導光頻譜分析 141 5.3.2 MMI 單環環形共振器光學特性 143 5.3.3 MMI 串聯雙環結構環形共振器光學特性 145 5.3.4 MMI環形共振器量測結果比較與探討 148 5.4 光記憶體元件量測數據分析 151 5.4.1 Optical Memory 1:單層 BFO 儲存層整合於矽光波導 151 5.4.2 Optical Memory 2:雙層 TiOx/Al2O3 儲存層整合於矽光波導 152 5.4.3 Optical Memory 3:雙層 TiOx / Al2O3 多電阻記憶體整合於矽光波導(模擬多級存取) 156 5.4.4 Optical Memory 4:雙層 BFO/ Al2O3儲存層嵌入於單環 MMI 環形共振腔 163 5.4.5 Optical Memory 5:雙層 BFO/Al2O3 儲存層嵌入於串聯雙環 MMI 環形共振腔 164 5.5 參考文獻 168 第六章 結果討論與未來研究 169 6.1 未來研究 171 6.1.1 Future work1: 171 6.1.2 Future work2: 171 6.1.3 Future work3: 174 6.2 參考文獻 174

    [1] R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm," IEEE Journal of Quantum Electronics, vol. 22, no. 6, pp. 873-879, 1986.
    [2] R. A. Soref and J. P. Lorenzo, "Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components," Electronics Letters, vol. 21, no. 21, pp. 953-954, 1985.
    [3] R. A. Soref, "Silicon-based optoelectronics," Proceedings of the IEEE, vol. 81, no. 12, pp. 1687-1706, 1993.
    [4] S. Shekhar, W. Bogaerts, L. Chrostowski, J. E. Bowers, M. Hochberg, R. Soref, and B. J. Shastri, "Roadmapping the next generation of silicon photonics," Nat Commun, vol. 15, no. 1, p. 751, Jan 25 2024.
    [5] D. Ielmini and H. S. P. Wong, "In-memory computing with resistive switching devices," Nature Electronics, vol. 1, no. 6, pp. 333-343, 2018.
    [6] G. Pedretti, E. Ambrosi, and D. Ielmini, "Conductance variations and their impact on the precision of in-memory computing with resistive switching memory (RRAM)," presented at the 2021 IEEE International Reliability Physics Symposium (IRPS), 2021.
    [7] P. Mannocci, M. Farronato, N. Lepri, L. Cattaneo, A. Glukhov, Z. Sun, and D. Ielmini, "In-memory computing with emerging memory devices: Status and outlook," APL Machine Learning, vol. 1, no. 1, 2023.
    [8] S. Wang and Z. Sun, "Dual in-memory computing of matrix-vector multiplication for accelerating neural networks," Device, vol. 2, no. 12, 2024.
    [9] U. Koch, C. Hoessbacher, A. Emboras, and J. Leuthold, "Optical memristive switches," Journal of Electroceramics, vol. 39, no. 1, pp. 239-250, 2017/12/01 2017.
    [10] N. Youngblood, C. A. Ríos Ocampo, W. H. P. Pernice, and H. Bhaskaran, "Integrated optical memristors," Nature Photonics, vol. 17, no. 7, pp. 561-572, 2023/07/01 2023.
    [11] C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, "Integrated all-photonic non-volatile multi-level memory," Nature Photonics, vol. 9, no. 11, pp. 725-732, 2015.
    [12] S. Cheung, B. Tossoun, Y. Yuan, Y. Peng, Y. Hu, W. V. Sorin, G. Kurczveil, D. Liang, and R. G. Beausoleil, "Energy efficient photonic memory based on electrically programmable embedded III-V/Si memristors: switches and filters," Communications Engineering, vol. 3, no. 1, 2024.
    [13] A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, "Nanoscale Plasmonic Memristor with Optical Readout Functionality," Nano Letters, vol. 13, no. 12, pp. 6151-6155, 2013/12/11 2013.
    [14] S. Kumar, A. Kumar, R. D. Mishra, S. K. Pandey, P. Babu, and M. Kumar, "Reconfigurable multiwavelength nanophotonic circuit based on a low-voltage, optically readable engineered resistive switch," Nanoscale, 10.1039/D5NR00463B vol. 17, no. 17, pp. 10922-10931, 2025.
    [15] Y. Zhang, D. Yao, J. Wang, Z. Luo, R. Tian, C. Fang, X. Gan, Y. Liu, Y. Hao, and G. Han, On-chip non-volatile electron-optical memory switch based on ferroelectric doped graphene. 2023.
    [16] Z. Chen, W. Liu, B. Zhang, K. Wu, Z. Li, P. Bing, L. Tan, H. Zhang, and J. Yao, "Nanoscale and ultra-high extinction ratio optical memristive switch based on plasmonic waveguide with square cavity," Applied Optics, vol. 62, no. 1, pp. 27-33, 2023/01/01 2023.
    [17] H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, "Miniature Multilevel Optical Memristive Switch Using Phase Change Material," ACS Photonics, vol. 6, no. 9, pp. 2205-2212, 2019.
    [18] Z. Xu, B. Tang, X. Zhang, J. F. Leong, J. Pan, S. Hooda, E. Zamburg, and A. V. Thean, "Reconfigurable nonlinear photonic activation function for photonic neural network based on non-volatile opto-resistive RAM switch," Light Sci Appl, vol. 11, no. 1, p. 288, Oct 6 2022.
    [19] S. Cheung, D. Liang, Y. Yuan, Y. Peng, Y. Hu, G. Kurczveil, and R. G. Beausoleil, "Non-volatile heterogeneous III-V/Si photonics via optical charge-trap memory," arXiv preprint arXiv:2305.17578, 2023.
    [20] S. Xia, Z. Hu, M. Rombouts, H. Freire Santana, Y. Wang, A. Rasoulzadeh Zali, O. Raz, and N. Calabretta, "Photonic WDM switches architecture for multi-band optical networks," J. Opt. Commun. Netw., vol. 16, no. 8, pp. D18-D28, 2024/08/01 2024.
    [21] D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," (in eng), Opt Express, vol. 15, no. 6, pp. 3149-55, Mar 19 2007.
    [22] T. T. Bui, D. T. Le, T. H. L. Nguyen, and T. T. Le, "On chip optical neural networks based on MMI microring resonators for image classification," Computer Optics, vol. 47, no. 4, pp. 588-595, 2023.
    [23] C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, "The plasmonic memristor: a latching optical switch," Optica, vol. 1, no. 4, 2014.
    [24] L. Singh, S. Jain, and M. Kumar, "Electrically writable silicon nanophotonic resistive memory with inherent stochasticity," Opt Lett, vol. 44, no. 16, pp. 4020-4023, Aug 15 2019.
    [25] S. Kumar, R. D. Mishra, A. Kumar, P. Babu, S. Pandey, and M. Kumar, "Double-Slot Nanophotonic Platform for Optically Accessible Resistive Switching with High Extinction Ratio and High Endurance," ACS Photonics, vol. 10, no. 11, pp. 4071-4078, 2023.
    [26] R. Dev Mishra, S. Kumar Pandey, P. Babu, S. Kumar, A. Kumar, N. Mohanta, and M. Kumar, "Nanophotonic resistive switch based on tapered copper-silicon structure with low power and high extinction ratio," Optics & Laser Technology, vol. 175, 2024.
    [27] S. Kumar, A. Kumar, R. D. Mishra, P. Babu, S. K. Pandey, S. Devi, G. Brunetti, C. Ciminelli, and M. Kumar, "Multilevel Nanophotonic Resistive Switching in Ag-ITO-SiO2 on Silicon with Enhanced Optical Storage Density," Journal of Lightwave Technology, pp. 1-7, 2024.
    [28] L. Singh, S. Srivastava, S. Rajput, V. Kaushik, R. D. Mishra, and M. Kumar, "Optical switch with ultra high extinction ratio using electrically controlled metal diffusion," Opt Lett, vol. 46, no. 11, pp. 2626-2629, Jun 1 2021.
    [29] S. Park, J. Noh, M. L. Choo, A. M. Sheri, M. Chang, Y. B. Kim, C. J. Kim, M. Jeon, B. G. Lee, B. H. Lee, and H. Hwang, "Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device," Nanotechnology, vol. 24, no. 38, p. 384009, Sep 27 2013.
    [30] L. Xia, P. Gu, B. Li, T. Tang, X. Yin, W. Huangfu, S. Yu, Y. Cao, Y. Wang, and H. Yang, "Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication," Journal of Computer Science and Technology, vol. 31, no. 1, pp. 3-19, 2016.
    [31] Q. Xia and J. J. Yang, "Memristive crossbar arrays for brain-inspired computing," Nat Mater, vol. 18, no. 4, pp. 309-323, Apr 2019.
    [32] H. Erfanijazi, L. A. Camuñas-Mesa, E. Vianello, T. Serrano-Gotarredona, and B. Linares-Barranco, "A Fully Digital Relaxation-Aware Analog Programming Technique for HfOx RRAM Arrays," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 8, pp. 3685-3689, 2024.
    [33] K.-C. Chuang, K.-Y. Lin, J.-D. Luo, W.-S. Li, Y.-S. Li, C.-Y. Chu, and H.-C. Cheng, "Effects of Electric Fields on the Switching Properties Improvements of RRAM Device With a Field-Enhanced Elevated-Film-Stack Structure," IEEE Journal of the Electron Devices Society, vol. 6, pp. 622-626, 2018.
    [34] D. Rabus, Integrated Ring Resonators The Compendium. 2007.
    [35] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," Journal of Lightwave Technology, vol. 15, no. 6, pp. 998-1005, 1997.
    [36] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photonics Technology Letters, vol. 10, no. 4, pp. 549-551, 1998.
    [37] S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," IEEE Photonics Technology Letters, vol. 11, no. 6, pp. 691-693, 1999.
    [38] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser & Photonics Reviews, vol. 6, no. 1, pp. 47-73, 2011.
    [39] P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, "Thermally tunable silicon racetrack resonators with ultralow tuning power," Optics Express, vol. 18, no. 19, pp. 20298-20304, 2010/09/13 2010.
    [40] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature, vol. 435, no. 7040, pp. 325-7, May 19 2005.
    [41] W.-C. Hsu, N. Nujhat, B. Kupp, J. F. Conley, and A. X. Wang, "On-chip wavelength division multiplexing filters using extremely efficient gate-driven silicon microring resonator array," Scientific Reports, vol. 13, no. 1, p. 5269, 2023/03/31 2023.
    [42] A. Poon, F. Xu, and X. Luo, "Cascaded active silicon microresonator array cross-connect circuits for WDM networks-on-chip - art. no. 689812," Proceedings of SPIE - The International Society for Optical Engineering, vol. 6898, 02/07 2008.
    [43] D. Rabus and M. Hamacher, "MMI-coupled ring resonators in GaInAsP-InP," Photonics Technology Letters, IEEE, vol. 13, pp. 812-814, 09/01 2001.
    [44] D. X. Xu, S. Janz, and P. Cheben, "Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering," IEEE Photonics Technology Letters, vol. 18, no. 2, pp. 343-345, 2006.
    [45] L. W. Cahill and T. T. Le, "MMI Devices for Photonic Signal Processing," in 2007 9th International Conference on Transparent Optical Networks, 1-5 July 2007 2007, vol. 1, pp. 202-205, doi: 10.1109/ICTON.2007.4296067.
    [46] J. A. Kubby, D.-X. Xu, G. T. Reed, P. Cheben, A. Delage, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, "Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering," presented at the Silicon Photonics II, 2007.
    [47] T.-T. Le, "Microring resonator Based on 3x3 General Multimode Interference Structures Using Silicon Waveguides for Highly Sensitive Sensing and Optical Communication Applications," International Journal of Applied Science and Engineering, vol. 11, no. 1, pp. 31-39, 2013.
    [48] T.-T. Le, "Design of a polarization independent MMI SOI coupler based microresonator using sandwich structures," J. Eng. Sci. Technol, vol. 8, no. 2, pp. 133-144, 2013.
    [49] C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.
    [50] H. F. Talbot, "LXXVI. Facts relating to optical science. No. IV," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 9, no. 56, pp. 401-407, 1836.
    [51] O. Bryngdahl, "Image formation using self-imaging techniques," Journal of the Optical Society of America, vol. 63, no. 4, pp. 416-419, 1973.
    [52] R. Ulrich, "Image formation by phase coincidences in optical waveguides," Optics Communications, vol. 13, no. 3, pp. 259-264, 1975.
    [53] M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N× N multimode interference couplers including phase relations," Applied optics, vol. 33, no. 18, pp. 3905-3911, 1994.
    [54] L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," Journal of Lightwave Technology, vol. 13, no. 4, pp. 615-627, 1995.
    [55] F. Caccavale, F. Gonella, G. Caneva, and I. Mansour, "Iterative simplex-finite difference method for the characterization of optical waveguides," Journal of Lightwave Technology, vol. 14, no. 8, pp. 1825-1830, 1996.
    [56] J. S. Rodgers, S. E. Ralph, and R. P. Kenan, "Self-guiding multimode interference threshold switch," Optics Letters, vol. 25, no. 23, pp. 1717-1719, 2000.
    [57] H. Li, X. Dong, E. Li, Z. Liu, and Y. Bai, "Design Optimization and Comparative Analysis of Silicon-Nanowire-Based Couplers," IEEE Photonics Journal, vol. 4, no. 5, pp. 2017-2026, 2012.
    [58] S. Malthesh and N. Krishnaswamy, "Improvement in quality factor of double microring resonator for sensing applications," Journal of Nanophotonics, vol. 13, no. 02, 2019.
    [59] B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Optics letters, vol. 21, no. 17, pp. 1390-1392, 1996.
    [60] A. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, vol. 14, no. 4, pp. 483-485, 2002.
    [61] J. E. Heebner, W. Vincent, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE Journal of Quantum Electronics, vol. 40, no. 6, pp. 726-730, 2004.
    [62] J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Optics letters, vol. 29, no. 24, pp. 2861-2863, 2004.
    [63] R. S. Tucker and J. L. Riding, "Optical Ring-Resonator Random-Access Memories," Journal of Lightwave Technology, vol. 26, no. 3, pp. 320-328, 2008.
    [64] F. Mandorlo, P. Rojo-Romeo, X. Letartre, R. Orobtchouk, and P. Viktorovitch, "Compact modulated and tunable microdisk laser using vertical coupling and a feedback loop," Optics express, vol. 18, no. 19, pp. 19612-16925, 2010.
    [65] J. Zhang, R. S. Guzzon, L. A. Coldren, and J. Yao, "Optical dynamic memory based on an integrated active ring resonator," Opt Lett, vol. 43, no. 19, pp. 4687-4690, Oct 1 2018.
    [66] H. Chen, "Non-volatile photonic-electronic memory via 3D monolithic ferroelectric-silicon ring resonator," Light Sci Appl, vol. 13, no. 1, p. 271, Sep 26 2024.
    [67] L. K. Biswas, M. Shafkat, M. Khan, L. Lavdas, and N. Asadizanjani, "Emerging Nonvolatile Memories—An Assessment of Vulnerability to Probing Attacks," presented at the ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 2022.
    [68] A. Prakash and H. Hwang, "Multilevel Cell Storage and Resistance Variability in Resistive Random Access Memory," Physical Sciences Reviews, vol. 1, no. 6, 2016.
    [69] Z. Shen, C. Zhao, Y. Qi, W. Xu, Y. Liu, I. Z. Mitrovic, L. Yang, and C. Zhao, "Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application," Nanomaterials (Basel), vol. 10, no. 8, Jul 23 2020.
    [70] G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, and M. Nafría, "Metal oxide resistive memory switching mechanism based on conductive filament properties," Journal of Applied Physics, vol. 110, no. 12, 2011.
    [71] I. Valov and T. Tsuruoka, "Effects of moisture and redox reactions in VCM and ECM resistive switching memories," Journal of Physics D: Applied Physics, vol. 51, no. 41, 2018.
    [72] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
    [73] E. Feigenbaum, K. Diest, and H. A. Atwater, "Unity-order index change in transparent conducting oxides at visible frequencies," Nano Lett, vol. 10, no. 6, pp. 2111-6, Jun 9 2010.
    [74] V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, "Transparent conducting oxides for electro-optical plasmonic modulators," Nanophotonics, vol. 4, no. 1, pp. 165-185, 2015.
    [75] Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, "Indium-Tin-Oxide for High-performance Electro-optic Modulation," Nanophotonics, vol. 4, no. 1, pp. 198-213, 2015.
    [76] C. C. Lin, P. H. Chang, Y. Su, and A. S. Helmy, "Monolithic Plasmonic Waveguide Architecture for Passive and Active Optical Circuits," Nano Lett, vol. 20, no. 5, pp. 2950-2957, May 13 2020.
    [77] C. Mahata, M. Kang, and S. Kim, "Multi-Level Analog Resistive Switching Characteristics in Tri-Layer HfO(2)/Al(2)O(3)/HfO(2) Based Memristor on ITO Electrode," Nanomaterials (Basel), vol. 10, no. 10, Oct 20 2020.
    [78] S. Rajput, V. Kaushik, P. Babu, P. Tiwari, A. K. Srivastava, and M. Kumar, "Optical Modulation via Coupling of Distributed Semiconductor Heterojunctions in a Si-ITO-Based Subwavelength Grating," Physical Review Applied, vol. 15, no. 5, 2021.
    [79] S. K. Pandey, S. Rajput, V. Kaushik, P. Babu, R. Dev Mishra, and M. Kumar, "Electrically Tunable Plasmonic Absorber based on Cu-ITO Subwavelength grating on SOI at telecom wavelength," Plasmonics, vol. 17, no. 4, pp. 1709-1716, 2022.
    [80] P. I. Rajan, S. Mahalakshmi, and S. Chandra, "The structural, electronic, magnetic and optical properties of the new promising spintronic material Bi0.92Tb0.08FeO3: A first-principles approach," Computational Materials Science, vol. 145, pp. 244-251, 2018.
    [81] A. K. Jena, A. K. Sahoo, and J. Mohanty, "Effects of magnetic field on resistive switching in multiferroic based Ag/BiFeO3/FTO RRAM device," Applied Physics Letters, vol. 116, no. 9, 2020.
    [82] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W. Cheong, "Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3," Science, vol. 324, no. 5923, pp. 63-66, 2009.
    [83] S. Mukherjee, "Studies on Dielectric, PE loop Measurements and PL spectra Analysis of BFO-NFO, BFO-CFO, BFO-ZFO (Perovskite-Spinel) Nanocomposites prepared by Solution Method," International Journal of Current Engineering and Technology, vol. 7, no. 2, pp. 413-420, 2017.
    [84] S. Amirtharajan, P. Jeyaprakash, J. Natarajan, and P. Natarajan, "Electrical investigation of TiO2 thin films coated on glass and silicon substrates—effect of UV and visible light illumination," Applied Nanoscience, vol. 6, no. 4, pp. 591-598, 2016/04/01 2016.
    [85] M. Benčina, A. Iglič, M. Mozetič, and I. Junkar, "Crystallized TiO2 Nanosurfaces in Biomedical Applications," Nanomaterials, vol. 10, no. 6, p. 1121, 2020.
    [86] S. Paul, M. A. Rahman, S. B. Sharif, J.-H. Kim, S.-E.-T. Siddiqui, and M. A. M. Hossain, "TiO2 as an Anode of High-Performance Lithium-Ion Batteries: A Comprehensive Review towards Practical Application," Nanomaterials, vol. 12, no. 12, p. 2034, 2022.
    [87] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, vol. 408, no. 3-4, pp. 131-314, 2005.
    [88] D. Dai and S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Optics express, vol. 17, no. 19, pp. 16646-16653, 2009.
    [89] V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, "Ultra-compact silicon nanophotonic modulator with broadband response," Nanophotonics, vol. 1, no. 1, pp. 17-22, 2012.
    [90] J. Zhang, L. Zhang, and W. Xu, "Surface plasmon polaritons: physics and applications," Journal of Physics D: Applied Physics, vol. 45, no. 11, 2012.
    [91] A. Emboras, C. Hoessbacher, Y. Fedoryshyn, P. Ma, C. Haffner, A. Melikyan, M. Kohl, C. Hafner, and J. Leuthold, "Plasmonic switches," in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, 6-10 July 2014 2014, pp. 730-732.
    [92] A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, M. Ping, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, "Electrically Controlled Plasmonic Switches and Modulators," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 4, pp. 276-283, 2015.
    [93] U. Koch, C. Hoessbacher, A. Emboras, and J. Leuthold, "Optical memristive switches," Journal of Electroceramics, vol. 39, no. 1-4, pp. 239-250, 2017.
    [94] A. Tuniz, O. Bickerton, F. J. Diaz, T. Kasebier, E. B. Kley, S. Kroker, S. Palomba, and C. M. de Sterke, "Modular nonlinear hybrid plasmonic circuit," Nat Commun, vol. 11, no. 1, p. 2413, May 15 2020.
    [95] Y. Tian, S. Zhang, and W. Tan, "An Ultra-Compact Design of Plasmonic Memristor with Low Loss and High Extinction Efficiency Based on Enhanced Interaction between Filament and Concentrated Plasmon," Photonics, vol. 8, no. 10, 2021.
    [96] Z. Chen, W. Liu, B. Zhang, K. Wu, Z. Li, P. Bing, L. Tan, H. Zhang, and J. Yao, "Nanoscale and ultra-high extinction ratio optical memristive switch based on plasmonic waveguide with square cavity," Appl Opt, vol. 62, no. 1, pp. 27-33, Jan 1 2023.
    [97] G. J. M. Krijnen, H. J. W. M. Hoekstra, and P. V. Lambeck, "A new method for the calculation of propagation constants and field profiles of guided modes of nonlinear channel waveguides based on the effective index method," Journal of Lightwave Technology, vol. 12, no. 9, pp. 1550-1559, 1994.
    [98] C. Kin Seng, L. Kai Ming, and K. Kam Shing, "Effective-index method with built-in perturbation correction for integrated optical waveguides," Journal of Lightwave Technology, vol. 14, no. 2, pp. 223-228, 1996.
    [99] A. M. Zaghlous and A. A. Abou-El-Fadl, "A simple analytical, approach to optical rib waveguides," in Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249), 25-25 Feb. 1999 1999, pp. B9/1-B9/8, doi: 10.1109/NRSC.1999.760882.
    [100] M. M. Abouellell and F. J. Leonberger, "Waveguides in Lithium Niobate," Journal of the American Ceramic Society, vol. 72, no. 8, pp. 1311-1321, 2005.
    [101] J. Golden, H. Miller, D. Nawrocki, and J. Ross, "Optimization of Bi-layer Lift-Off Resist Process," 01/01 2009.
    [102] J. Lueke, A. Badr, E. Lou, and W. A. Moussa, "Microfabrication and integration of a sol-gel PZT folded spring energy harvester," Sensors (Basel), vol. 15, no. 6, pp. 12218-41, May 26 2015.
    [103] K. Khojier, H. Savaloni, E. Shokrai, Z. Dehghani, and N. Z. Dehnavi, "Influence of argon gas flow on mechanical and electrical properties of sputtered titanium nitride thin films," Journal of Theoretical and Applied Physics, vol. 7, no. 1, p. 37, 2013/07/27 2013.
    [104] Mahata, Chandreswar, Kim, and Sungjun, "Multi-level resistive switching in HfO2/Al2O3/HfO2 based memristor on transparent ITO electrode," IEEE, pp. 1–3, 2020.
    [105] K. M. Persson, M. S. Ram, and L. E. Wernersson, "Ultra-Scaled AlOx Diffusion Barriers for Multibit HfOx RRAM Operation," IEEE Journal of the Electron Devices Society, vol. 9, pp. 564-569, 2021.
    [106] H. Nyquist, "Certain Topics in Telegraph Transmission Theory," Transactions of the American Institute of Electrical Engineers, vol. 47, pp. 617-624, April 01, 1928 1928.
    [107] D. Dai and S. He, "A silicon based hybrid plasmonic waveguide with a metal cap for a nano scale light confinement," Optics express, vol. 17, no. 19, pp. 16646-16653, 2009.
    [108] A. Emboras, C. Hoessbacher, Y. Fedoryshyn, P. Ma, C. Haffner, A. Melikyan, M. Kohl, C. Hafner, and J. Leuthold, "Plasmonic_switches," IEEE, pp. 730-732, 2014.
    [109] F. Xu and A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings," Optics Express, vol. 16, no. 12, pp. 8649-8657, 2008/06/09 2008.

    無法下載圖示 校內:2030-08-15公開
    校外:2030-08-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE