| 研究生: |
柯政衛 Ko, Cheng-Wei |
|---|---|
| 論文名稱: |
竹纖維複合材料彎曲後折角處之勁度變化 Stiffness Degradation at the Bending Point of Bent Bamboo Fiber Composites |
| 指導教授: |
楊文彬
Young, Wen-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 纖維體積比 、竹纖維複合材料 、彎曲試驗 、模擬試驗 、勁度劣化 |
| 外文關鍵詞: | bamboo fiber composites, bending test, fiber volume content, stiffness degradation, simulation test, failure behavior |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文探討竹纖維複合材料在彎曲負載下,不同折角勁度變化的行為與劣化程度。第一階段探討竹纖維複合材料之竹纖維體積比,研究結果表明,在竹纖維數量以及寬度、厚度相同的情況下,120° 試片的折角較小,導致樹脂填充較少,因此纖維體積相對150° 試片比較高。第二階段探討竹纖維複合材料折角處與平板處之厚度偏差率,研究結果表明,因模具為凸模,使材料更容易在真空壓力作用下,折角處樹脂流失更多,因此折角處厚度比平板處更減少,且角度越小,折角處與平板處之厚度偏差率會越大。第三階段探討竹纖維複合材料不同折角角度在彎曲試驗下,比較所得出的荷重與位移之關係,進一步評估材料之剛性、強度及變形行為,研究結果表明,120° 折角較為尖銳,在彎曲載荷下產生較大的局部應力集中,導致其承載能力與變形容許度相對較低。折角 150∘試片表現出較高的剛性與強度,受力分佈較均勻、抗破壞能力較強。第四階段將透過微觀及巨觀方式觀察彎曲試驗後材料折角處的裂紋情形,研究結果表明,折角 120∘試片裂紋擴展行為相較於150∘較為顯眼。第五階段則透過模擬試驗,使模擬與實驗結果達到最大程度一致性,最後針對折角處進行材料性質劣化分析,用數據化呈現折角處之局部材料勁度對整體彎曲剛性的影響。
This study investigates the behavior and degradation of bamboo fiber-reinforced composites under bending loads, focusing on variations in stiffness at different fold angles. First, we examine the fiber volume content of bamboo fiber composites to assess its impact on mechanical properties. The composites are fabricated using the vacuum preforming process and the vacuum-assisted resin transfer molding (VARTM) method. Thickness deviation rates between the fold areas and flat sections are calculated to ensure the accuracy of mechanical performance analysis. Subsequently, bending tests are conducted to compare the load-displacement relationships of specimens with different fold angles and to observe crack formation at the fold areas. Finally, simulations are performed using ANSYS Workbench to achieve the possible consistency between experimental and simulation results. The localized stiffness at the fold areas was quantified, and the results demonstrated that such localized degradation has a significant impact on the overall flexural stiffness of the composite structure.
[1] 張鈞瑋 and 張豐丞, "竹材及其纖維之性質及應用潛力," 林業研究專訊, vol. 28, no. 2, pp. 50-53, 2021.
[2] Q. Chen et al., "Real-time flexural fracture behaviors and toughening mechanisms of bamboo slivers with different fiber content and moisture content," Engineering Fracture Mechanics, vol. 288, p. 109244, 2023.
[3] A. I. Amjad, "Bamboo fibre: A sustainable solution for textile manufacturing," Advances in Bamboo Science, p. 100088, 2024.
[4] Y. Jing, Y. Zheng, F. Yang, L. Huang, W. Dong, and Y. Wu, "Research on aliphatic resin-reinforced bamboo spun fiber bundles based on optimal twisting process," Materials Today Communications, vol. 41, p. 110486, 2024.
[5] F. S. Tong et al., "Influence of alkali treatment on physico-chemical properties of Malaysian bamboo fiber: A preliminary study," Malaysian Journal of Analytical Sciences, vol. 22, no. 1, pp. 143-150, 2018.
[6] A. Saha and P. Kumari, "Effect of alkaline treatment on physical, structural, mechanical and thermal properties of Bambusa tulda (Northeast Indian species) based sustainable green composites," Polymer Composites, vol. 44, no. 4, pp. 2449-2473, 2023.
[7] J. Kaima, I. Preechawuttipong, R. Peyroux, P. Jongchansitto, and T. Kaima, "Experimental investigation of alkaline treatment processes (NaOH, KOH and ash) on tensile strength of the bamboo fiber bundle," Results in engineering, vol. 18, p. 101186, 2023.
[8] A. Geremew, P. De Winne, T. A. Demissie, and H. De Backer, "Surface modification of bamboo fibers through alkaline treatment: Morphological and physical characterization for composite reinforcement," Journal of Engineered Fibers and Fabrics, vol. 19, p. 15589250241248764, 2024.
[9] H.-H. Chiu and W.-B. Young, "Characteristic study of bamboo fibers in preforming," Journal of Composite Materials, vol. 54, no. 25, pp. 3871-3882, 2020.
[10] B.-J. Wang and W.-B. Young, "The natural fiber reinforced thermoplastic composite made of woven bamboo fiber and polypropylene," Fibers and Polymers, vol. 23, no. 1, pp. 155-163, 2022.
[11] Y. Hou et al., "Experimental investigation on mechanical properties of aged bamboo fiber-reinforced composites under quasi-static loading," Journal of the Mechanical Behavior of Biomedical Materials, vol. 143, p. 105869, 2023.
[12] K. Mohammed, R. Zulkifli, M. F. M. Tahir, and T. S. Gaaz, "A study of mechanical properties and performance of bamboo fiber/polymer composites," Results in Engineering, vol. 23, p. 102396, 2024.
[13] J. Hu, S. Zhang, J. Lin, Y. Yu, W. Yu, and Y. Huang, "Towards Sustainable High-Performance Materials: Tailoring the Mechanical Properties of Bamboo-Based Fiber Composites through Controlled Processing," Chemical Engineering Journal, vol. 512, p. 162331, 2025.
[14] L. Xia et al., "Enhanced mechanical performance of bamboo fiber/polypropylene composites via micro-nano reinforcing strategy," Composites Part B: Engineering, vol. 280, p. 111488, 2024.
[15] R. Abhilash, G. Venkatesh, and S. S. Chauhan, "Micromechanical modeling of bamboo short fiber reinforced polypropylene composites," Multiscale and Multidisciplinary Modeling, Experiments and Design, vol. 4, pp. 25-40, 2021.
[16] S. M. Belal, M. S. Anwar, M. S. Islam, M. Arifuzzaman, and M. A. Al Bari, "Numerical study on the design of flax/bamboo fiber reinforced hybrid composites under bending load," Hybrid Advances, vol. 4, p. 100112, 2023.
[17] 莊溪. "桂竹." 中央研究院生物多樣性研究中心. http://kplant.biodiv.tw/%E6%A1%82%E7%AB%B9/%E6%A1%82%E7%AB%B9.htm (accessed April, 2024).
[18] 呂錦明, 台灣竹圖鑑. 晨星出版, 2010.
[19] C. Lian et al., "Ultrastructure of parenchyma cell wall in bamboo (Phyllostachys edulis) culms," Cellulose, vol. 27, no. 13, pp. 7321-7329, 2020.
[20] X. Wang et al., "Investigation of the microstructure, chemical structure, and bonding interfacial properties of thermal-treated bamboo," International Journal of Adhesion and Adhesives, vol. 125, p. 103400, 2023.
[21] L. Osorio, E. Trujillo, F. Lens, J. Ivens, I. Verpoest, and A. Van Vuure, "In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties," Journal of Reinforced Plastics and Composites, vol. 37, no. 17, pp. 1099-1113, 2018.
[22] F. Rusch, A. D. Wastowski, T. S. de Lira, K. C. C. S. R. Moreira, and D. de Moraes Lúcio, "Description of the component properties of species of bamboo: a review," Biomass Conversion and Biorefinery, vol. 13, no. 3, pp. 2487-2495, 2023.
[23] 簧城竹簾. "台灣僅存的專業竹簾工廠_第五種天然紡織纖維_竹纖維." https://bamboocurtain7.blogspot.com/2014/09/blog-post_29.html (accessed.
[24] D. T. Ebissa, T. Tesfaye, D. Worku, and D. Wood, "Characterization and optimization of alkali-treated yushania alpina bamboo fiber properties: case study of ethiopia species," SN Applied Sciences, vol. 4, no. 3, p. 79, 2022.
[25] H. Chen et al., "Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers," Cellulose, vol. 24, pp. 333-347, 2017.
[26] K. Vardhini, R. Murugan, and R. Rathinamoorthy, "Effect of alkali treatment on physical properties of banana fibre," Indian Journal of Fibre & Textile Research (IJFTR), vol. 44, no. 4, pp. 459-465, 2019.
[27] T. M. Joseph et al., "Polyethylene terephthalate (PET) recycling: A review," Case Studies in Chemical and Environmental Engineering, p. 100673, 2024.
[28] H. Sukanto, W. W. Raharjo, D. Ariawan, J. Triyono, and M. Kaavesina, "Epoxy resins thermosetting for mechanical engineering," Open Engineering, vol. 11, no. 1, pp. 797-814, 2021.
[29] Y. Liu et al., "Recyclable epoxy resins with different silyl ether structures: structure–property relationships and applications in diverse functional composites," Composites Part A: Applied Science and Manufacturing, vol. 179, p. 108017, 2024.
[30] R. S. Mbakop, G. Lebrun, and F. Brouillette, "Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers," Composites Part A: Applied Science and Manufacturing, vol. 109, pp. 604-614, 2018.
[31] V. R. Tamakuwala, "Manufacturing of fiber reinforced polymer by using VARTM process: A review," Materials Today: Proceedings, vol. 44, pp. 987-993, 2021.
[32] M. A. Yalcinkaya, E. M. Sozer, and M. C. Altan, "Fabrication of high quality composite laminates by pressurized and heated-VARTM," Composites Part A: Applied Science and Manufacturing, vol. 102, pp. 336-346, 2017.
[33] 周紫濃, "竹纖維拉伸強度之研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2015.
[34] 許家泓, "竹纖維/聚酯纖維編織預型與複合材料之研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2023.
[35] K.-J. Wu and W.-B. Young, "Fabrication and quality analysis of angle composite part by vacuum-bag-only process with interleaved woven fiber/prepreg layup," The International Journal of Advanced Manufacturing Technology, vol. 122, no. 7, pp. 3281-3297, 2022.
[36] K.-J. Wu and W.-B. Young, "Complex angle part fabricated by vacuum bag only process with interleaved dry fiber and prepreg," Journal of Composite Materials, vol. 57, no. 2, pp. 199-211, 2023.
[37] 邱宣豪, "連續竹纖維預型與竹纖維複合材料研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2019.
[38] 黃博偉, "竹纖維表面處理對吸水率與機械性質探討," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2023.
[39] B. Agarwal, L. Broutman, B. Agarwal, and L. Broutman, Analysis and performance of fiber composites Second edition. John Wiley & Sons, 1990.
校內:2027-07-01公開