簡易檢索 / 詳目顯示

研究生: 吳柏翰
Wu, Bo-Han
論文名稱: 曾文溪日新護岸堤體土壤抗液化強度之研究
Investigating the soil Liquefaction Resistance of the soils for the Ri Shin Embankment at Tseng Wen River
指導教授: 吳建宏
Wu, Jian-Hong
共同指導教授: 古志生
Ku, Chih-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 曾文溪堤防土壤液化動態三軸試驗粉土質砂
外文關鍵詞: Tsengwen River bank, soil liquefaction, dynamic triaxial test, silty sand
相關次數: 點閱:149下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究先採集曾文溪沿岸五處河堤鄰近高灘地土壤,分別為尖山堤防、日新護岸、東昌堤防、寮部堤防及蘇厝堤防,進行物理性質試驗,發現組成成分主要為無塑性之粉土質砂,且其土壤粒徑分布均在容易發生土壤液化的粒徑分布範圍之內,因此,有需要進一步探討其動態行為與液化阻抗,接著採用日新護岸河灘地土壤做為試驗土樣,進行動態三軸試驗,以改變細粒料含量、相對密度與添加泥岩材料等方式來討論其抗液化強度的改變,並以應力應變曲線來分析各個土壤材料之動態行為。
      試驗結果顯示,日新護岸乾淨砂之抗液化強度比日新護岸土壤之抗液化強度還要高,其液化阻抗上升了約91%。若改變日新護岸土壤之相對密度,以相對密度33%、50%、70%之試體來進行試驗,日新護岸土壤之抗液化強度會隨著相對密度的增加而有上升的趨勢,這兩種方式皆對日新護岸土壤抗液化的能力有會有明顯成效。而添加泥岩添加物之取代量分別為10%與30%,當泥岩取代量10%時,與取代量為0%比較,液化阻抗下降了約10%,而泥岩取代量30%時,與取代量為0%比較,液化阻抗上升了約6%左右,可以看到添加泥岩後對提升日新護岸土壤抗液化能力的效果不彰。

    In this study, the collection of soil samples was conducted at five areas along the Tsengwen River banks, including the Jianshan Embankment, Rishin Embankment, Dongchang Embankment, Liaobu Embankment, and Sucuo Embankment. The soil samples were examined through physical properties to the discovery that they are mainly composed of non-plastic silty sands. Particle size distribution curves then allowed analyses to determine whether the samples are liquefiable. Next, soil from the Rishin Embankment riverbank was selected as the sample to perform dynamic triaxial tests, and through methods such as altering the fine content, relative density, and adding mudstone, changes in its liquefaction resistance were explored. Finally, the dynamic behavior of each soil sample was analyzed through the stress-strain curve.
      The result suggests that, compared to the soil of the Rishin Embankment, its clean sand has better liquefaction resistance, increasing approximately 91%. As the relative density of the soil of the Embankment is respectively increased from 33%, 50%, to 70%, the liquefaction resistance correspondingly displays an upward trend. Therefore, both methods can notably strengthen the liquefaction resistance of the Rishin Embankment soil. In contrast, adding mudstone appears to be ineffective in strengthening the liquefaction resistance of the soil. Compared with a sample with 0% mudstone, when the mudstone content is increased to 10%, the liquefaction resistance drops roughly 10%, whereas it increases around 6% when the mudstone content is increased to 30%.

    摘要 I 致謝 X 目錄 XI 圖目錄 XIV 表目錄 XIX 照片目錄 XX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究方法與流程 2 1-3 論文內容 4 第二章 文獻回顧 5 2-1土壤液化之介紹 5 2-1-1土壤液化之現象與機制 5 2-1-2反覆應力下砂土的破壞形態 8 2-2影響液化特性之因素 9 2-2-1相對密度對液化阻抗的影響 9 2-2-2細粒料含量對液化阻抗的影響 12 2-2-3塑性指數對液化阻抗的影響 20 2-3土壤受反覆應力下的行為 26 2-3-1土壤受剪後的應力狀態 26 2-3-2 動態三軸試驗的基本理論 27 2-4堤防產生液化破壞之型態 29 2-5可能產生液化之粒徑分佈範圍 31 2-6日新護岸液化破壞狀況 32 第三章 研究場址與材料介紹 36 3-1 地理位置與地形介紹 36 3-2 地質情況 38 3-3 試驗材料取得與介紹 38 3-4 試驗土樣介紹 42 第四章 試驗儀器與方法 43 4-1試驗儀器介紹 43 4-1-1加壓系統 43 4-1-2氣壓控制系統 43 4-1-3電腦控制系統 45 4-1-4三軸室 46 4-2 試驗步驟與規劃 47 4-2-1 試體重模 47 4-2-2 試驗步驟 49 4-2-3試驗規劃 51 第五章 結果分析與討論 52 5-1 基本物理性質試驗結果 52 5-2 動態三軸試驗試驗結果 58 5-2-1 動態三軸試驗之土壤液化判定標準 58 5-2-2 乾淨砂與日新護岸土壤之抗液化強度比較 64 5-2-3 不同相對密度對日新護岸土壤抗液化強度的影響 68 5-2-4 不同泥岩取代量對土壤抗液化強度的影響 72 第六章 結論與建議 78 6-1 結論 78 6-2 建議 80 第七章 參考文獻 81 附錄 87

    1. 中央地質調查所官網(http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm),2017。
    2. 水利署第六河川局官網(http://www.wra06.gov.tw/ct.asp?xItem=406&ctNode=31957&mp=106),2017。
    3. 台南市政府文化局官網(http://asc.tnc.gov.tw/index.php/mobile/media/item/53/164),2017。
    4. 中央氣象局官網(http://www.cwb.gov.tw/V7/earthquake/quake_index.htm),2017。
    5. 吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,第39-66頁,1979。
    6. 吳偉特、楊騰芳,「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第14卷,第3期,第59-74頁,1987。
    7. 余定縣,「貓羅溪高細粒料土壤抗液化強度之研究」,國立台灣大學土木工程研究所,碩士論文,台北,台灣,2004。
    8. 李政融,「動力三軸試驗探討含細料粉質砂土之動態行為」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2010。
    9. 林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程學研究所,碩士論文,台南,台灣,2006。
    10. 陳守德,「微量細料對砂性土壤液化潛能之影響」,國立台灣大學土木工程學研究所,碩士論文,台北,台灣,1986。
    11. 夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程學研究所,碩士論文,台北,台灣,1992。
    12. 陳嘉裕,「細粒料含量對砂土液化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文,台南,台灣,1999。
    13. 陳界文,「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程學研究所,碩士論文,台北,台灣,2002。
    14. 孫家雯,「砂土細料界定對液化強度之影響」,國立台灣大學土木工程研究所,碩士論文,台北,台灣,2003。
    15. 陳俊吉,「低塑性粉土工程性質之研究」,國立成功大學土木工程研究所,博士論文,台南,台灣,2013。
    16. 陳冠宏,「波浪力結合地震力下海床土壤液化潛能評估之研究」,國立海洋大學河海工程學系,碩士論文,基隆,台灣,2014。
    17. 倪勝火,「美濃地震引致曾文溪大內堤防設施災害調查」,地工技術,第148期,第71-80頁,2017
    18. 許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2003。
    19. 蔡祁欽、王國隆、許尚逸、楊炫智、張為光、陳家漢、黃郁惟,「美濃地震台南地區土壤液化與地工災害之踏勘調查」,地工技術,第148期,第31-44頁,2016。
    20. 經濟部水利署
    (https://www.wra.gov.tw/ct.asp?xItem=93753&CtNode=10011),2017。
    21. Boulanger, R.W., and Idriss, I.M., "Liquefaction dusceptibility criteria for silts and clays", ASCE Journal of Geotechnical and Geoenvironmental Engineering, 133(6), pp.641-652, 2006.
    22. Chung, N.Y., Yeh, S.T., and Kaufman, L.P., "Liquefaction potential of clean and silty sands", Proceedings of the Third International Earthquake Microzonation Conference, Seattle, USA, 2, pp. 1017-1032, 1982.
    23. Chien, L. K., Oh, Y. N., Chang, C. H., "Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil" , Canadian Geotechnical Journal, 39(1), pp.254-265, 2002.
    24. El Hosri, M. S., Briarez, H., Hicher, P. Y. "Liquefaction characteristics of silty clay ", Proceedings 8th World Conference on Earthquake Engineering, Prentice-Hall , New Jersey, pp.277-284, 1984.
    25. Guo, T., Prakash, S. "Liquefaction of silts and silt-clay mixtures ", Journal of Geotechnical and Geoenvironmental Engineering, 125(8), pp.706-710, 1999.
    26. Ishihara, K., and Tadatsu, H., "Effects of over-consolidation ko conditions on the liquefaction characteristics of sands ", Soils and Foundations, 19(4), pp. 59-68, 1979.
    27. Ishihara, K., Troncoso, J., Kawase, Y., and Takahashi, Y., "Cyclic strength characteristics of tailing materials ", Soil and Foundations, pp.127-142, 1980.
    28. Ishibashi, I.M., Sherlif, M.A., Cheng, W.L., "The effects of soil parameters on pore pressure rise and liquefaction prediction ", Soils and Foundations, 22(1), pp. 37-48, 1982.
    29. Ishihara, K., "Stability of natural deposits during earthquakes ", Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, (1), pp.321-376, 1985.
    30. Ishihara, K., "Liquefaction and flow failure during earthquakes ", Geotechnique, 43(3), pp.315-415, 1993.
    31. Idriss, I.M., Boulanger, R.W., “Semi–empirical procedures for evaluating liquefaction potential during earthquakes”, Proceedings of the 11th SDEE and 3rd ICEGE, University of California, Berkeley, plenarysession, pp. 32–56, 2004.
    32. Koester, J.P., "Effects of fines type and content on liquefaction potential oflow-to-medium plasticity fine-grained soils", Proceedings 1993 National Earthquake Conference, Memphis, Tennessee, 1, 67-75, 1993.
    33. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice HallInc, New Jersey, USA, 1996.
    34. Ladd, R., "Preparing test specimens using undercompaction," Geotechnical Testing Journal, 1(1), pp. 16-23, 1978
    35. Puri, V. K. "Liquefaction behavior and dynamic properties of loessial (silty)soils ", Ph.D. Thesis, University of Missouri-Rolla, Missouri, USA, 1984.
    36. Puri, V. K. "Liquefaction aspects of loessial soils ", Proceedings 4th U.S. National Conference on Earthquake Engineering Research Institute, Palm Springs, California, 3, pp.755-762, 1990.
    37. Prakash, S., Sandoval, J. A. "Liquefaction of low plasticity silts ", Soil Dynamics and Earthquake Engineering, 11(7), pp.373-379, 1992.
    38. Romero, S. "The behavior of silt as clay content is increased ", MS thesis, University of California, California, USA, 1995.
    39. Seed, H.B., Lee, K.L., "Liquefaction of saturated sands during cyclic loading ", Journal of the Soil Mechanics and Foundation Division, 92(6), pp.105-134, 1966.
    40. Seed, H.B., Idriss, I.M., Makdidi, F., and Banerjee, N., "Representation of irregular stress-time histories by equivalent uniform stress series in liquefaction analysis " Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, 1975.
    41. Seed, H.B. "Evaluation of soil liquefaction effects on level ground during earthquakes", Liquefaction Problems in Geotechnical Engineering, pp. 1-104, 1976.
    42. Seed, H.B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes”, Journal of the Geotechnical Engineering Division, ASCE, 105(2), pp.201-255, 1979
    43. Seed, H.B., Tokimatsu, K., Harder, L.F., Chung, R.M., "Influence of SPT procedures in soil liquefaction resistance evaluations", Journal of Geotechnical and Engineering, 111(12), pp. 1425-1444, 1985.
    44. Sandoval, J., "Liquefaction and settlement characteristics of silt soils," Ph.D. Thesis, University of Missouri-Rolla, Mo, 1989.
    45. Troncoso, J.H. "Failure risks of abandoned tailings dams", Proceedings International Symposium on Safety and Rehabilitation of Tailings Dams, pp.82-89, 1990.
    46. Wu, J., Kammerer, A.M., Riemer, M.F., Seed, R.B., Pestana, J.M., "Laboratory study of liquefaction triggering criteria", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 2580, 2004.
    47. 京藤敏達等人,「河川堤防における地震対策の検討とりまとめ」,関東地方河川堤防復旧技術等検討会,2011。
    48. 國土交通省,「港湾の施設の技術上の基準・同解説」,東京,日本,2007。

    無法下載圖示 校內:2022-07-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE