簡易檢索 / 詳目顯示

研究生: 鐘裕達
Chung, Yu-Ta
論文名稱: 羧基型離子交換材製備及回收銅之研究
Synthesis of carboxyl ion-exchanger and its recovery of copper
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 87
中文關鍵詞: 脫附羧基型離子交換材接枝銅去除
外文關鍵詞: desorption, grafting, carboxyl ion-exchanger, copper removal
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以丙烯酸為單體,以硝酸鈰銨(CAN)為起始劑對聚丙烯纖維行接枝聚合反應,製備羧基型離子交換材(carboxyl ion-exchanger),改變接枝參數,探討不同接枝條件對離子交換材物化特性之影響。並以最適接枝參數進行不同操作條件(鹼化、反應時間、pH值、基材添加量)下,探討羧基型離子交換材對銅離子吸附效能及行為,並利用適當的脫附劑將富集於離子交換材表面上的銅離子脫附回收。
    實驗結果顯示於添加4M丙烯酸單體、使用HNO3提高CAN催化能力、接枝時間6hr、接枝溫度60℃之最適接枝條件,羧基型離子交換材可得最大接枝率。而由後續銅離子吸附去除實驗結果顯示,pH=4、反應吸附時間60分鐘以上,羧基型離子交換材可有效將50mg/L銅溶液處理達放流水法規標準3mg/L,其吸附量達11.79 mg-Cu/g-polymer, 吸附行為屬Langmuir等溫吸附模式,速率符合一階反應吸附動力。另外,由脫附試驗結果可知,HNO3為最適酸脫附劑,於濃度6N、脫附時間15分鐘以上,可得 80%以上脫附率。羧基型離子交換材雖經五批次銅吸脫附實驗,其最終吸附效能仍可為第一次吸附效能83%以上,顯示其再生特性良好。由上述結果可知,羧基型離子交換材對銅離子具良好的吸附效能及再生性,配合酸脫附回收重金屬,應可達資源循環利用目標。

    In this research, the synthesis of carboxyl ion-exchanger was carried out by applying acrylic acid grafting onto polypropylene fibers. The ceric ammonium nitrate (CAN) was used as initiator for the carboxyl ion-exchanger preparation. The influence of the alkalization process and the effectiveness of carboxyl ion-exchanger for removal and recovery of copper using various operating conditions such as reaction time, pH and Cu/carboxyl ion-exchanger molar ratio were also evaluated in this work.
    Results from the synthesis experiments of carboxyl ion-exchanger showed that the maximum graft ratio was obtained with the concentration of acrylic acid as 4M, grafting time of 6 hrs and grafting temperature of 60℃. Under upon provision, the synthesized carboxyl ion-exchanger was used for copper removal treatments. And the results showed that with the reaction pH = 4, reaction time = 60 minutes, the synthesized carboxyl ion-exchanger could treat the copper-containing wastewater (50 mg/L) to the level that meets the Taiwan EPA’s effluent regulations (3 mg/L). The kinetics and the equilibrium studies indicated that the rate of copper uptake by carboxyl ion-exchanger was quite rapid and followed a pseudo-first-order kinetic model. The adsorption capacities for copper calculated from Langmuir isotherm equation was 11.79 mg-Cu/g-polymer.
    Results from the desorption experiment showed that 6N HNO3 was an efficient desorbing solution, which presenting the release amount of 80% of copper from ion-exchanger during reaction time of 15 minutes. Moreover, after five cycles of copper adsorption/desorption experiments, the adsorption capacity of carboxyl ion-exchanger was diminished 17% only, comparing the fresh one. From the above results, the carboxyl ion-exchanger presents the feasibility for removal and recovery of copper from wastewater, which could be a worthwhile alternative.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究目的與方法 2 第二章 文獻回顧 3 2-1 含銅重金屬廢水之處理概況 3 2-2自由基接枝聚合反應 5 2-3羧基型離子交換材特性與應用 11 2-3-1 聚丙烯纖維之基本特性 11 2-3-2 聚丙烯纖維之應用 12 2-3-3 聚丙烯纖維親水化 14 2-3-4 親水性基團—丙烯酸單體特性 15 2-4 吸附理論 19 2-4-1 物理吸附與化學吸附 19 2-4-2 等溫吸附模式 20 2-5 小結 24 第三章 實驗設備、材料與方法 25 3-1研究架構及實驗流程 25 3-2 實驗設備及材料 28 3-2-1實驗設備 28 3-2-2實驗材料 29 3-3 實驗方法 30 3-3-1 羧基型離子交換材之合成 30 3-3-2羧基型離子交換材吸附去除銅離子 35 3-3-3羧基型離子交換材脫附回收銅離子 36 3-3-4 固液相組成分析 37 第四章 結果與討論 39 4-1 羧基型離子交換材之最適合成條件探討 39 4-1-1添加試劑種類及順序對於羧基型離子交換材聚合接枝之影響 39 4-1-2 丙烯酸單體濃度對於羧基型離子交換材聚合接枝之影響 45 4-1-3 接枝時間對於羧基型離子交換材聚合接枝之影響 48 4-1-4 接枝溫度對於羧基型離子交換材聚合接枝之影響 50 4-1-5 小結 52 4-2羧基型離子交換材吸附去除銅離子 53 4-2-1鹼化程序對羧基型離子交換材吸附去除銅離子之影響 53 4-2-2反應時間對COONa型離子交換材吸附去除銅離子之影響 57 4-2-3反應pH對COONa型離子交換材吸附去除銅離子之影響 58 4-2-4 COONa型離子交換材添加量對銅離子去除之影響 60 4-3 COONa型離子交換材脫附回收銅離子 69 4-3-1不同脫附劑對COONa型離子交換材銅離子脫附效能 之影響 70 4-3-2 COONa型離子交換材脫附特性探討 72 4-3-3羧基型離子交換材吸脫附特性及最適吸脫附條件 之綜合探討 77 第五章 結論與建議 79 5-1 結論 79 5-2 建議 80 參考文獻 82

    Anirudhan, T.S., Unnithan, M.R., Divya, L. and Senan, P., 2007. Synthesis and Characterization of Polyacrylamide-Grafted Coconut Coir Pith Having Carboxylate Functional Group and Adsorption Ability for Heavy Metal Ions. Journal of Applied Polymer Science, 104(6), pp. 3670-3681.
    Bailey, S.E., Olin, T.J., Bricka, R.M. and Adrian, D.D., 1999. A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), pp. 2469-2479.
    Bhattacharya, S.D. and Inamdar, M.S., 2007. Polyacrylic Acid Grafting Onto Isotactic Polypropylene Fiber: Methods, Characterization, and Properties. Journal of Applied Polymer Science, 103(2), pp. 1152-1165.
    Chan, W.C. and Ferng, J.C., 1999. Mass Transport Process for the Adsorption of Cr(VI) onto Water-Insoluble Cationic Starch Synthetic Polymers in Aqueous Systems. Journal of Applied Polymer Science, 71(14), pp. 2409-2418.
    Chansook, N. and Kiatkamjornwong, S., 2003. Ce(IV)-Initiated Graft Polymerization of Acrylic Acid onto Poly(ethylene terephthalate) Fiber. Journal of Applied Polymer Science, 89(7), pp. 1952-1958.
    Chen, C. and Wang, X., 2006. Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. Industrial and Engineering Chemistry Research, 45(26), pp. 9144-9149.
    Chowdhury, P. and Banerjee, M., 1998. Graft Polymerization of Methyl Methacrylate onto Polyvinyl Alcohol Using Ce4+ Initiator. Journal of Applied Polymer Science, 70(3), pp. 523-527.
    Coskun, R., Soykan, C. and Sacak, M., 2006. Removal of some heavy metal ions from aqueous solution by adsorption using poly(ethylene terephthalate)-g-itaconic acid/acrylamide fiber. Reactive and Functional Polymers, 66(6), pp. 599-608.
    Fernandez, M.J., Casinos, I. and Guzman, G.M., 1990. Grafting of Vinyl Acetate-Methyl Acrylate Mixture onto Cellulose. Effect of Ceric Ion and Nitric Acid Concentrations. Journal of Applied Polymer Science, 41(9-10), pp. 2221-2240.
    Gao, J.P., Tian R.C., Yu, J.C. and Duan, M.L., 1994. Graft Copolymers of Methy Methacrylate onto Canna Starch Using Manganic Pyrophosphate as an Initiator. Journal of Applied Polymer Science, 53(8), pp. 1091-1102.
    Gawish, S.M., Kantouch, A., El Nagcar, A.M. and Mosleh, S., 1992. Grafting of 2-(Dimethylamino) Ethyl Methacrylate onto Gamma Irradiated Polypropylene Fabric. Journal of Applied Polymer Science, 44(9), pp. 1671-1677.
    Godjevargova, T., Simeonova, A. and Dimov, A., 2002. Adsorption of Heavy Metal Ions from Aqueous Solutions by Porous Polyacrylonitrile Beads. Journal of Applied Polymer Science, 45(1), pp. 55-59.
    Guclu, G., Keles, S. and Guclu, K., 2006. Removal of Cu2+ Ions from Aqueous Solutions by Starch-Graft-Acrylic Acid Hydrogels. Polymer-Plastics Technology and Engineering, 45(1), pp. 55-59.
    Gurdag, G., Guçlu, G. and Ozgumu S., 2001. Graft Copolymerization of Acrylic Acid onto Cellulose: Effects of Pretreatments and Crosslinking Agent. Journal of Applied Polymer Science, 80(12), pp. 2267-2272.
    Jana, S.C., Maiti, S. and Biswas, S., 2000. Graft Copolymerization of Acrylonitrile onto Poly(Vinyl Alcohol) in Presence of Air Using Ceric Ammonium Nitrate-Natural Gums. Journal of Applied Polymer Science, 78(9), pp. 1586-1590.
    Kasgoz, H., Ozgumus, S. and Orbay, M., 2003. Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer, 44, pp. 1785-1793.
    Kele , H. Çelk, M., Saçak, M. and Aksu, L., 1999. Graft Copolymerization of Methyl Methacrylate upon Gelatin Initiated by Benzoyl Peroxide in Aqueous Medium. Journal of Applied Polymer Science, 74(6), pp. 1547-1556.
    Keles, S. and Guclu, G., 2006. Competitive Removal of Heavy Metal Ions by Starch-Graft-Acrylic Acid Copolymers. Polymer-Plastics Technology and Engineering, 45(3), pp. 365-371.
    Kubota, H. and Ogiwara, Y., 1970. Graft Copolymerization onto Cellulose by Ceric Ion Initiator System: Effects of Kind of Acid and Irradiation with Ultraviolet Light. Journal of Applied Polymer Science, 14(10), pp. 2611-2618.
    Lin, W. and Hsieh, Y.L., 1997. Ionic Absorption of Polypropylene Functionalized by Surface Grafting and Reactions. Journal of Polymer Science: Part A: Polymer Chemistry, 35(4), pp. 631-642.
    Liu, C., Bai, R. and Hong, L., 2006. Diethylenetriamine-grafted poly(glycidyl methacrylate) adsorbent for effective copper ion adsorption. Journal of Colloid and Interface Science, 303(1), pp. 99-108.
    Liu, M., Zhao, Q., Wang, Y., Niu, J. and Cao, S., 2004. Nylon-6 film grafted with acrylic acid for dissepiment in alkaline storage batteries. Polymers for Advanced Technologies, 15(1-2), pp. 105-110.
    Mohanty, E. and Singh, B.C., 1998. Graft Copolymerization of Methyl Methacrylate onto Jute Fiber Initiated by Cerium(IV) –DMSO Redox Initiator System. Journal of Applied Polymer Science, 69(13), pp. 2569-2576.
    Mostafa, Kh. M., 1995. Graft Polymerization of Acrylic Acid onto Starch Using Potassium Permanganate Acid (Redox System). Journal of Applied Polymer Science, 56(2), pp. 263-269.
    Moharram, M.A., Balloomal, S. and El-Gendy, H.M., 1996. Infrared Study of the Complexation of Poly(acrylic acid) with Poly(acry1amide). Journal of Applied Polymer Science, 59(6), pp. 987-990.
    Mukherjee, A. K., Gupta, B. D.Disperse dyeing of methacrylic acid grafted polypropylene fibers, J. S. D. C.,Vol. 104, PP.130-133 1985
    Park, H.J. and Na, C.K., 2006. Prearation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property. Journal of Colloid and Interface Science, 301(1), pp. 46-54
    Sacak, M., Sertkaya, F. and Talu, M., 1992. Grafting of Poly(ethylene Terephthalate) Fibers with Methacrylic Acid Using Benzoyl Peroxide. Journal of Applied Polymer Science, 44(10), pp. 1737-1742.
    Shim, J.W., Park, S.J. and Ryu, S.K., 2001. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39(11), pp. 1635-1642.
    Shukla, J.S. and Sharma, G.K., 1987. Graft Copolymerization of Methyl Methacrylate onto Wool Initiated By Ceric Ammonium Nitrate-Thioglycolic Acid Redox Couple in Presence of Air. IV. Journal of Polymer Science: Part A: Polymer Chemistry, 25(2), pp. 595-605.
    Somanathan, N., Balasubramaniam, B., and Subramaniam, V., 1995. Grafting Of Polyester Fibers. Journal Of Macromolecular Science-Pure And Applied Chemistry A32(5), 1025-1036
    Sundardi, F., 1978. Graft Copolymerization of Hydrophilic Monomers onto Irradiated Polypropylene Fibers. Journal of Applied Polymer Science, 22(11), pp. 3163-3176.
    Sun, Q.Y., Lu, P. and Yang, L.Z., 2004. The adsorption of lead and copper from aqueous solution on modified peat–resin particles. Environmental Geochemistry and Health, 26(2), pp. 311-317.
    Tan, S., Li, G. and Shen, J., 2000. Study of Modified Polypropylene Nonwoven Cloth. Ⅰ. Graft Copolymerization of 4-Vinylpyridine onto Polypropylene Nonwoven Cloth by Preirradiation Method. Journal of Applied Polymer Science, 77(9), pp. 1861-1868.
    Tamura, T., Kawauchi, S., Satoh, M. and Komiyama, 1997. Infrared spectroscopic study and ab initio calculation for dissociation of poly (α-hydroxy acrylic acid) in aqueous solutions. Polymer, 38(9), pp. 2093-2098.
    Unlu, N. and Ersoz, M., 2006. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. Journal of Hazardous Materials, 136(2), pp. 272-280.
    Wang, P., 2000. Surface Modification of Natural Rubber Latex Films by Graft Copolymerization. European Polymer Journal, 36(7), pp. 1323-1331.
    Wang, W., Wang, L., Chen, X., Yang, Q., Sun, T. and Zhou, J., 2006. Study on the Graft Reaction of Poly(propylene) Fiber with Acrylic Acid. Macromolecular Materials and Engineering, 291(2), pp. 173-180.
    Zhu, Y., An, L. and Jiang, W., 2003. Monte Carlo Simulation of the Grafting of Maleic Anhydride onto Polypropylene at Higher Temperature. Macromolecules, 36(10), pp.3714-3720.

    莊和達,聚合反應原理(下),復文書局,1977。
    高木謙行,聚丙烯樹脂pp原理與實用,1981。
    薛敬和,高分子化學,高立圖書有限公司,1988。
    工業局工業污染防治技術計畫專案書,經濟部,2003。
    行政院經濟部工業局網頁,2007。
    莊仲揚,幾丁聚醣/丙烯酸共聚體合成與性質研究,國立台灣大學化學工程學系碩士論文,2000。
    張益國,黃酸鹽程序去除銅離子及其生成物之穩定性,國立成功大學環境工程學系博士論文,台灣台南,2003。
    陳滄欽,澱粉黃酸鹽程序捕集及熱處理回收重金屬之研究,國立成功大學環境工程學系碩士論文,台灣台南,2004。

    下載圖示 校內:2008-08-09公開
    校外:2008-08-09公開
    QR CODE