| 研究生: |
朱家緯 Chu, Chia-Wei |
|---|---|
| 論文名稱: |
應用雷射粉床熔融積層製造於碳化矽對鋁基複合結構之影響研究 The Effect of Silicon Carbide on Aluminum Matrix Composites Fabricated by Laser Powder Bed Fusion |
| 指導教授: |
洪嘉宏
Hung, Chia-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 雷射粉末床融合 、AlSi10Mg 、碳化矽 、鋁基複合材 、機械性質 |
| 外文關鍵詞: | Laser powder bed fusion, AlSi10Mg, SiC, Aluminum matrix composite, Mechanical properties |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中將探究雷射光斑大小對粉末床融合製造AlSi10Mg合金製程參數、機械性質、微觀結構之影響。以雷射光斑直徑(120 μm、 60 μm)進行獨立的線參數實驗,其結合雷射功率和掃描速率找出合適的製程條件,並定義各種線參數類型,探討光斑大小是如何影響加工參數圖及能量密度分布。結果表明,兩種光斑尺寸在搭配適當的加工參數下都成功地製造出無孔隙和缺陷的樣品,最高密度達99.96%。然而,拉伸樣品性能上有了輕微的轉變,在大光斑尺寸下表現出更高的伸長率,另一方面,在小光斑尺寸下則表現出更高的抗拉強度及降伏強度。此外,在X射線繞射分析儀中檢測到極強的α-Al (200) 峰值,此種結晶演化與兩種光斑尺寸的能量密度值相關;而繞射角偏移也驗證了雷射光斑尺寸間,因熱源機制所造成的晶粒結構差異。所有拉伸試樣的斷裂特徵都代表AlSi10Mg之韌性斷裂。
除此之外,本文也對於SiC顆粒與AlSi10Mg粉末混合,通過雷射粉末床熔合(LPBF)製造強化之鋁基複合材料進行研究,其研究針對SiC顆粒含量對LPBF加工複合材料的密度、微觀結構、顯微硬度、磨耗性能和拉伸性能作一系列之分析。發現鋁基複合材料中鋁枝晶被壓縮,晶界成長得更加明顯。由於熔融鋁基體與SiC顆粒之間的化學反應,形成了Al4SiC4針板狀、及豐富的Si多面晶核和Al-Si-C共晶物質。結果表明,耐磨性在SiC顆粒的參與下瞬間提高。然而,1.459 × 10-4 mm3N-1m-1的最低磨耗率以及約0.12的低摩擦係數發生於10重量百分比SiC混AlSi10Mg複合材料中。此材料展現出最優異的磨耗性能,是因為其硬度相對於未經碳化矽增強的鋁合金有效提高了約42%,且緻密度仍處於高水平。此外,磨損機制隨著碳化矽含量增加由磨粒磨損轉變為粘著磨損,主因是空洞及孔隙率的出現。不幸的是,隨著鋁基複合結構之演變,拉伸性能相對於鋁合金下降,而剪切唇區的消失,也象徵斷裂模式由韌性斷裂轉變為脆性斷裂。
The influences of laser spot size on mechanical properties and microstructure of AlSi10Mg alloy, fabricated by laser powder bed fusion, have been studied. Individual single track experiments were carried out by various laser spot diameters (120 μm, and 60 μm) to find out proper conditions combined with laser power and scanning speed, define various types of single track parameters, and investigate how the different spot size effect the processing window and energy density distribution. Using the proper parameters to fabricate the layer-layer samples, both the spot size parameters successfully obtained excellent results in dense cross section without pore and defect, the highest density about 99.96%. However, the stress-strain curve have slight transition in tensile performance, the higher elongation exhibit with 120 μm spot size condition, on the other hand, higher tensile strength and yield strength shown in spot size 60 μm. Strong α-Al (200) peak detected in X-ray diffraction with crystallization evolution correlated with the energy density values for both the spot sizes, and the diffraction angle shift indicate the heat source mechanism difference between the laser spot size condition. All the tensile specimens fracture characteristics represent the ductile fracture in as-built AlSi10Mg.
Besides, SiC particle were mixed with AlSi10Mg powder to fabricate reinforced aluminum matrix composites by the laser powder bed fusion (LPBF). The influence of starting SiC particle content on the density, microstructure, microhardness, wear performance and tensile properties of the LPBF-processed composite were investigated. Aluminum dendrites are compressed in the aluminum matrix composite and the grain boundaries grow more significantly. Due to the chemical reaction between molten Al-matrix and SiC particle, the products of Al4SiC4 needle-plate, Si faceted-grain, and Al-Si-C eutectic phase were formed. Wear mechanism transfer from abrasive wear to adhesive wear mainly due to pore and void appearance. The wear resistance suddenly improved with the participation of SiC particles. The lowest wear rate of 1.459 × 10-4 mm3N-1m-1 combined with the low coefficient of friction about 0.12 exhibit the excellent wear performance in the 10 wt.%SiC/AlSi10Mg composite, which due to its hardness effectively elevate about 42% over the un-reinforced AlSi10Mg alloy, while the densification level is still at a high grade. Unfortunately, the tensile properties decrease as the aluminum matrix composite structure becomes brittle. Fracture mode change from ductile fracture to brittle fracture because of disappearing of the shear lip zone.
[1] C. Galy, E. Le Guen, E. Lacoste, C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manufacturing, vol.22, pp. 165-175, 2018.
[2] P. O’Regan, P. Prickett, R. Setchi, G. Hankins, N. Jones, “Metal Based Additive Layer Manufacturing: Variations, Correlations and Process Control,” Procedia Computer Science, vol. 96, pp. 216-224, 2016.
[3] G. Dursun, S. Ibekwe, G. Li, P. Mensah, G. Joshi, D. Jerro, “Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting,” Materials Today: Proceedings, vol. 26, pp. 387-397, 2020.
[4] W. Pei, W. Zhengying, C. Zhen, D. Jun, H. Yuyang, L. Junfeng, Z. Yaton, “The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior,” Applied Surface Science, vol. 408, pp. 38-40, 2017.
[5] J. J. S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B Stucker, “Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting,” Progress in Additive Manufacturing, vol. 2, pp. 157-167, 2017.
[6] L. Wang, Q. S. Wei, Y. S. Shi, J. H. Liu, W. T. He, “Experimental Investigation into the Single-Track of Selective Laser Melting of IN625,” Advanced Materials Research, vol. 233-235, pp. 2844-2848, 2011.
[7] E. Vaglio, T. De Monte, A. Lanzutti, G. Totis, M. Sortino, L. Fedrizzi, “Single tracks data obtained by selective laser melting of Ti6Al4V with a small laser spot diameter,” Data in Brief, vol. 33, p. 106443, 2020.
[8] Z. Wang, Z. Xiao, Y. Tse, C. Huang, Zhang W, “Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy,” Optics & Laser Technology, vol. 112, pp. 159-167, 2019.
[9] M. Tang, P.C. Pistorius, J. L. Beuth, “Prediction of lack-of-fusion porosity for powder bed fusion,” Additive Manufacturing, vol. 14, pp. 39-48, 2017.
[10] W. E. King, H.D. Barth, V. M. Castillo, G.F. Gallegos, J. W. Gibbs, D. E. Hahn, C. Kamath, A. M. Rubenchik, “Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” Journal of Materials Processing Technology, vol. 214, pp. 2915-2925, 2014.
[11] I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, “Single track formation in selective laser melting of metal powders,” Journal of Materials Processing Technology, vol. 210, pp. 1624-1631, 2010.
[12] W. Shi, Y. Liu, X. Shi, Y. Hou, P. Wang, G. Song, “Beam Diameter Dependence of Performance in Thick-Layer and High-Power Selective Laser Melting of Ti-6Al-4V,” Materials, vol. 11, no. 7, p. 1237, 2018.
[13] P. K. Rohatgi, “Metal matrix composites,” Defence Science Journal, vol. 43, no. 4, p. 323, 1993.
[14] E. Fereiduni, A. Ghasemi, M. Elbestawi, “Selective Laser Melting of Aluminum and Titanium Matrix Composites: Recent Progress and Potential Applications in the Aerospace Industry,” Aerospace, vol. 7, no. 6, pp. 77, 2020.
[15] J. G. Kaufman, E. L. Rooy, “Aluminum alloy castings: properties, processes, and applications,” Asm International, 2004.
[16] H. M. Zakaria, “Microstructural and corrosion behavior of Al/SiC metal matrix composites,” Ain Shams Engineering Journal, vol. 5, no. 3, pp. 831-838, 2014.
[17] H. Su, W. Gao, Z. Feng, Z. Lu, “Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites,” Materials and Design, vol. 36, pp. 590-596, 2012.
[18] M. H. Rahman, H. M. M. Al Rashed, “Characterization of silicon carbide reinforced aluminum matrix composites,” Procedia Engineering, vol. 90, pp. 103-109, 2014.
[19] S. Kumar, J. P. Kruth, “Composites by rapid prototyping technology,” Materials and Design, vol. 31, no. 2, pp. 850-856, 2010.
[20] H. Liao, H. Zhu, G. Xue, X. Zeng, “Alumina loss mechanism of Al2O3-AlSi10 Mg composites during selective laser melting,” Journal of Alloys and Compounds, vol. 785, pp. 286-295, 2019.
[21] D. Dai, D. Gu, M. Xia, C. Ma, H. Chen, T. Zhao, C. Hong, A. Gasser, R. Poprawe, “Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite,” Surface and Coatings Technology, vol. 349, pp. 279-288, 2018.
[22] Y. Sahin, M. Acılar, “Production and properties of SiCp-reinforced aluminium alloy composites,” Composites Part A: Applied Science and Manufacturing, vol. 34, no. 8, pp. 709-718, 2003.
[23] L. Y. Jiang, T. T. Liu, C. D. Zhang, K. Zhang, M. C. Li, T. Ma, W. H. Liao, “Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting,” Materials Science and Engineering: A, vol. 734, pp. 171-177, 2018.
[24] T. C. Lin, C. Cao, M. Sokoluk, L. Jiang, X. Wang, J. M. Schoenung, E. J. Lavernia, X. Li, “Aluminum with dispersed nanoparticles by laser additive manufacturing,” Nature communications, vol. 10, no. 1, p. 4124, 2019.
[25] X. P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H. W. Wang, J. Vleugels, J. V. Humbeeck, J. P. Kruth, “Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility,” Acta Materialia, vol. 129, pp. 183-193, 2017.
[26] V. A. Popovich, E. V. Borisov, A. A. Popovich, V. S. Sufiiarov, D. V. Masaylo, L. Alzina, “Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties,” Materials and Design, vol. 114, pp. 441-449, 2017.
[27] C. Galy, E. L. Guen, E. Lacoste, C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manufacturing, vol. 22, pp. 165-175, 2018.
[28] Y. Zhou, N. Li, J. Yan, Q. Zeng, “Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods,” The Journal of prosthetic dentistry, vol. 120, no. 4, pp. 617-623, 2018.
[29] J. M. Torralba, C. E. Costa, F. Velasco, “P/M aluminum matrix composites: an overview,” Journal of Materials Processing Technology, vol. 133, no. 1-2, pp. 203-206, 2003.
[30] C. Gode, H. Yilmazer, I. Ozdemir, Y. Todaka, “Microstructural refinement and wear property of Al–Si–Cu composite subjected to extrusion and high-pressure torsion,” Materials Science and Engineering: A, vol. 618, pp. 377-384, 2014.
[31] X. Xi, B. Chen, C. Tan, X. Song, J. Feng, “Microstructure and mechanical properties of SiC reinforced AlSi10Mg composites fabricated by laser metal deposition,” Journal of Manufacturing Processes, vol. 58, pp. 763-774, 2020.
[32] D. Gu, F. Chang, D. Dai, “Selective laser melting additive manufacturing of novel aluminum based composites with multiple reinforcing phases,” Journal of Manufacturing Science and Engineering, vol. 137, no. 2, 2015.
[33] F. Chang, D. Gu, D. Dai, P. Yuan, “Selective laser melting of in-situ Al4SiC4+ SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size,” Surface and Coatings Technology, vol. 272, pp. 15-24, 2015.
[34] G. Xue, L. Ke, H. Zhu, H. Liao, J. Zhu, X. Zeng, “Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 764, p. 138155, 2019.
[35] R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, “Balling behavior of stainless steel and nickel powder during selective laser melting process,” The International Journal of Advanced Manufacturing Technology, vol. 59, pp. 1025-1035, 2012.
[36] S. Cacace, Q. Semeraro, “Improvement of SLM Build Rate of A357 alloy by optimizing Fluence,” Journal of Manufacturing Processes, vol. 66, pp. 115-124, 2021.
[37] A. G. Demir, L. Monguzzi, B. Previtali, “Selective laser melting of pure Zn with high density for biodegradable implant manufacturing,” Additive Manufacturing, vol. 15, pp. 20-28, 2017.
[38] U.S. Bertoli, A. J. Wolfer, M. J. Matthews, J. P. R. Delplanque, J. M. Schoenung, “On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting,” Materials & Design, vol. 113, pp. 331-340, 2017.
[39] J. Metelkova, Y. Kinds, K. Kempen, C de. Formanoir, A. Witvrouw, B. V. Hooreweder, “On the influence of laser defocusing in Selective Laser Melting of 316L,” Additive Manufacturing, vol. 23, pp. 161-169, 2018.
[40] M. Ghayoor, K. Lee, Y. He, C. H. Chang, B. K. Paul, S. Pasebani, “Selective laser melting of 304L stainless steel: Role of volumetric energy density on the micro structure, texture and mechanical properties,” Additive Manufacturing, vol. 32, p. 101011, 2020.
[41] J. Ciurana, L. Hernandez, J. Delgado, “Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material,” The International Journal of Advanced Manufacturing Technology, vol. 68, pp. 1103-1110, 2013.
[42] J. C. Viala, P. Fortier, J. Bouix, “Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide,” Journal of Materials Science, vol. 25, pp. 1842-1850, 1990.
[43] R. Anandkumar, A. Almeida, R. Colaço, R. Vilar, V. Ocelik, J. T. M. De Hosson, “Microstructure and wear studies of laser clad Al-Si/SiC (p) composite coatings,” Surface and Coatings Technology, vol. 201, no. 24, pp. 9497-9505, 2007.
[44] N. Read, W. Wang, K. Essa, M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Materials and Design, vol. 65, pp. 417-424, 2015.
[45] J. H. Robinson, I. R. T. Ashton, E. Jones, P. Fox, C. Sutcliffe, “The effect of hatch angle rotation on parts manufactured using selective laser melting,” Rapid Prototyping Journal, vol. 25, no. 2, pp. 289-298, 2018.
[46] W. Di, Y. Yongqiang, S. Xubin, C. Yonghua, “Study on energy input and its influences on single-track,multi-track, and multi-layer in SLM,” The International Journal of Advanced Manufacturing Technology, vol. 58, pp. 1189-1199, 2012.
[47] D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, “Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting,” Journal of Laser Applications, vol. 26, no. 1, 2014.
[48] C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks, M. M. Attallah, “On the role of melt flow into the surface structure and porosity development during selective laser melting,” Acta Materialia, vol. 96, pp. 72-79, 2015.
[49] N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N. M. Everitt, “On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties,” Journal of Materials Processing Technology, vol. 230, pp. 88-98, 2016.
[50] U. Patakham, A. Palasay, P. Wila, R. Tongsri, “MPB characteristics and Si morphologies on mechanical properties and fracture behavior of SLM AlSi10Mg,” Materials Science and Engineering: A, vol. 821, p. 141602, 2021.
[51] T. Kimura, T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,” Materials and Design, vol. 89, pp. 1294-1301, 2016.
[52] M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar, “Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes,” Journal of Manufacturing Processes, vol. 37, pp. 274-280, 2019.
[53] Q. Chu, R. Bai, H. Jian, Z. Lei, N. Hu, C. Yan, “Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints,” Materials Characterization, vol. 137, pp. 269-276, 2018.
[54] L. Wang, S. Wang, X. Hong, “Pulsed SLM-manufactured AlSi10Mg alloy: Mechanical properties and microstructural effects of designed laser energy densities,” Journal of Manufacturing Processes, vol. 35, pp. 492-499, 2018.
[55] I. H. Zainelabdeen, F. A. Al-Badour, A. Y. Adesina, R. Suleiman, F. A. Ghaith, “Friction stir surface processing of 6061 aluminum alloy for superior corrosion resistance and enhanced microhardness,” International Journal of Lightweight Materials and Manufacture, vol. 6, no. 1, pp. 129-139, 2023.
[56] M. C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R. Fabbro, P. Peyre, “Influence of beam diameter on Laser Powder Bed Fusion (L-PBF) process,” Additive Manufacturing, vol. 36, p. 101532, 2020.
[57] M. Wang, B. Song, Q. Wei, Y. Shi, “Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting,” Journal of Alloys and Compounds, vol. 810, p. 151926, 2019.
[58] P. K. Deshpande, R. Y. Lin, “Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity,” Materials Science and Engineering: A, vol. 418, no. 1-2, pp. 137-145, 2006.
校內:2028-08-17公開