簡易檢索 / 詳目顯示

研究生: 田崇佑
Tien, Chung-Yu
論文名稱: 三維向量噴嘴薄膜冷卻之共軛熱傳數值模擬分析
Numerical Analyses of Film Cooling and Conjugate Heat Transfer for a Three-dimensional Thrust-vectoring Nozzle
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 92
中文關鍵詞: 薄膜冷卻向量噴嘴推力向量效能分析
外文關鍵詞: 3D Nozzle, Thrust Vectoring, Performance Analysis, Film Cooling
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新一代戰鬥機如美軍F-35使用三維向量噴嘴可提高飛行表現的機動性及靈敏性,但是也衍生出許多設計上的困難,如耐高溫材料之研發或冷卻系統的設計。向量噴嘴之高實驗成本以及高溫高速流體導致實驗的量測困難,本研究之三維向量噴嘴流場模擬,可以做為三維向量噴嘴冷卻效能的重要評估。本研究之數值模擬使用商用CFD軟體ANASYS FLUENT並採用SST k-ω紊流模式,此外成功地建立薄膜冷卻系統,且完成出口推力變化之分析,另外進行三組不同參數的模擬。首先,原本所預期最高溫區域位於偏轉段上部,但經由模擬分析顯示,有對外熱傳情況下偏轉段上部有較大散熱面積,所以噴嘴最高溫位置發生於偏轉段內側接近第二漸縮段的位置。過小流量之冷卻流體,會因為偏轉過程中造成的偏轉段上壁面高壓導致冷卻流體無法順利注入。冷卻流量比例較大者,向量噴嘴壁面可獲得較多的冷卻空氣覆蓋,最高溫區域的溫度下降率也比較高。冷卻流量大時對於主流場的衝擊也較大,推力損失的比例也比較多。而當冷卻流體注入角度與主流場越接近垂直時,冷卻流體對於主流場的衝擊也較大,進而影響推力表現。注入孔隙大小會影響注入口上下方冷卻流量之比例,進而影響冷卻效果的優劣。另外噴嘴冷卻流道的幾何外型設計是冷卻效能或推力效能優劣的主要關鍵。

    Modern fighters, such as USAF F-35, use 3D thrust-vectoring nozzles to enhance maneuverability and flexibility. Although the design improves fighter maneuverability, it causes thermal problem due to high-temperature flow strike. The internal flows of a 3D thrust-vectoring nozzle are analyzed in this study through numerical simulation. The characteristics that this research concerned include the thrust of the nozzle, the maximum wall temperature, and the detail flow in the cooling channel. In order to improve cooling benefit, three sensitive parameters, such as cooling mass flow rate of main flow, angle of cooling air injection, and slot length of cooling air injection, are analyzed. In the present study, the commercial CFD software, ANSYS FLUENT, employing the SST k-ω turbulence model and DO radiation model, was applied to analyzing the nozzle thrust variations. The simulation results of previous studies indicated that high temperature flow impacted the upper deflection wall. But surprisingly, this study indicates that upper deflection wall temperature is not as originally expected to be higher than the lower one. This is because the deflection section can deploy such that the upper wall has more cooling area for cooling down the nozzle wall. According to this reason, we need to concentrate cooling effect on the lower deflection wall. First, when the 3D thrust-vectoring nozzle deflects to 90 degree, the higher pressure at deflection upper area will cause lower quantity of cooling air injected to the main flow smoothly. Rich quantity of cooling air interacts intensely with the main flow, causing the thrust loss. Second, cooling-air injection angle is a main factor. If the channel direction is more vertical between the main flow and the cooling air, it will affect the thrust performance strongly. Due to the cooling channel geometry, the tilt angle model causes more heat transfer through the inner wall. Third, cooling injection slot length influences the cooling-air injection quantity of the upper site and the lower site when the 3D thrust-vectoring nozzle deflects to 90 degree. It will affect the temperature decreasing rate of high temperature decreasing rate temperature area seriously. Therefore, the cooling channel geometry design is a major factor for cooling effect and thrust performance.

    摘要 I SUMMARY III 致謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號索引 XXI 第一章 前言 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 研究動機及目的 13 第二章 數學與物理模式 15 2.1 噴嘴特性 15 2.2 基本假設 18 2.3 氣相流場統御方程式 18 2.3.1 能量方程式(Energy Equation) 18 2.3.2 連續方程式(Continuity Equation) 19 2.3.3 動量方程式(Momentum Equation) 19 2.3.4 狀態方程式(State Equation) 20 2.4 固相之統御方程式 20 2.5 紊流模型 21 2.6 邊牆函數模式 25 2.7 熱輻射模型 26 2.8 界面統御方程式 28 2.9 本研究三維向量噴嘴設計 30 2.10 本研究參數分析及邊界條件設定 33 2.11 三維向量噴嘴加入壁面熱傳分析 38 第三章 數值方法 39 3.1 SIMPLE運算法則 40 3.2 控制體積轉換之傳輸方程式 41 3.3 鬆弛係數 42 3.4 收斂標準 43 第四章 結果與討論 44 4.1 三維向量噴嘴網格獨立測試 45 4.2 無冷卻之三維向量噴嘴 50 4.3 比較注入不同質流量之冷卻流體 55 4.4 比較冷卻流體注入角度 67 4.5 比較冷卻流體注入孔隙大小 78 第五章 結論與未來建議 86 參考文獻 89

    【1】Rolls-Royce To Deliver First Lift Fan For F-35B,(Web: http://en.wikipedia.org/wiki/Rolls-Royce_LiftSystem)
    【2】Sketch of Su-27 Performing Pugachev's Cobra Manoeuvre,(Web: https://en.wikipedia.org/wiki/Sukhoi_Su-27)
    【3】C. W. Alcorn, M. A. Croom, M. S. Francis, and H. Ross, “The X-31 Aircraft: Advances in Aircraft Agility and Performance,” Prog. Aerosp. Sci., Vol. 32, No. 4, pp. 377-413, 1996.
    【4】王立杰,“俄製戰機超級機動性之探討”,空軍學術月刊, 第526期, pp.16-25, Sep. 2000.
    【5】USAF F-22 Raptor,
    (Web:http://www.migflug.com/jetflights/p-i-r-a-t-e-versus-raptor.html)
    【6】A. J. Steer, “Low Speed Control of a Second Generation Supersonic Transport Aircraft Using Integrated Thrust Vectoring,” Aeronaut. J., Vol. 104, No. 1035, pp. 237-245, May 2000.
    【7】V. Sherbaum and M. Lichtsinder, “Jet Deflection Angles in Military, Civil and RPV Thrust Vectoring Aircraft,” Int. J. Turbo Jet Eng., Vol. 15, No. 2, pp. 91-94, 1998.
    【8】劉延益,“外流場對二維向量噴嘴流場及出口推力影響之模擬分析研究”,國立成功大學航空太空工程學系碩士論文, 中華民國一百零三年.
    【9】H. Zhang, H. Liu, W. Shang, and J. Zhao, “Numerical Computations of Afterburner Flows and Heat Shield Buckling,” J. of Nanjing University of Aeronautic & Astronautic, p.394-399, Vol.32,8, 2000.
    【10】J.C. Pisharady, P. Balachandran and V. Vijayakumar, “Computational and Experimental Study on Supersonic Film Cooling For Liquid Rocket Nozzle Applications,” Liquid Propulsion Systems Centre, Valiamala, Thiruvananthapuram, Kerala, India- 695547,p49-58,Vol.19,2015.
    【11】G. Laschet, S. Rex, D. Bohn, and N. Moritz, “3-D Conjugate Analysis of Cooled Coated Plates and Homogenization of Their Thermal Properties, “,Numerical Heat Transfer, part. A, p.91-106,Vol.42, 2002.
    【12】W. Vickery and H. Iacovides, “Computation of Gas Turbine Blade Film Cooling,” 11th UK National Heat Transfer Conference. 6-8 September, 2009.
    【13】葉日哲, “後燃器含隔熱罩之高速流場共軛熱傳數值模擬分析”, 國立成功大學航空太空工程學系碩士論文, 中華民國九十七年.
    【14】E. Bilgen, and T. Yamane, “Conjugate Heat Transfer in Enclosures with Openings for Ventilation,” International Journal of Heat and Mass Transfer, p.401-411, Vol.40, 2004.
    【15】I. T. Al-Zaharnah, “Entropy Analysis in Pipe Flow Subjected to External Heating”, Entropy, p.391-403, Vol.5, 2003.
    【16】K. D. Cole, “Conjugate Heat Transfer from a Small Heated Strip,” International Journal of Heat Mass Transfer, p.2709-2791, No.11, Vol.40, 1997.
    【17】《全球防衛雜誌-軍事家(283期)》。台北:全球防衛雜誌社,2008年.
    【18】葉恩佑, “三維向量噴嘴動態流場之數值模擬分析”, 國立成功大學航空太空工程學系碩士論文, 中華民國一零四年.
    【19】A. Bailey, L. L. Price and J. G. Pipes, “Effect of Ambient Pressure on Nozzle Centerline Flow Properties,” AIAA J., Vol. 23, No. 6, pp. 953, June 1985.
    【20】J. W. Smolka and L. A. Walker, G. H. Johnson, and G. S. Schkolnik, “F-15 Active Flight Research Program, ”Society of Experimental Test Pilots 40th Symposium Preceding, 1996.
    【21】D.J.Wing and F.J.Capone,”Performance Characteristics of Two Multiaxis Thrust-Vectoring Nozzles at Mach Numbers up to 1.28,” NASA Technical Paper 3313,May 1993.
    【22】B. L. Berrier and R. J. Re,“A Review of Thrust-Vectoring Technology Schemes for Fighter Aircraft,”AIAA pp.78-1023, July, 1978.
    【23】Thrust Vectoring Nozzle of The F135-PW-600 STOVL Variant,(Web:https://en.wikipedia.org/wiki/Pratt_%26_Whitney_F135)
    【24】吳望一, 流體力學, 狀元出版社, 1989.
    【25】ANSYS FLUENT, “ANSYS FLUENT 15.0 User Guide,”ANSYS Inc, 2013.
    【26】林志儒, “汽車車內外輻射熱流場耦合分析”,國立屏東科技大學車輛工程系,中華民國九十四年.
    【27】B. E. Launder, and D. B. Spalding,“The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, pp.269-289, Vol.3,1974.
    【28】F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer,” John Welly and Sons, Asia, pp. A-5, 2007.
    【29】周育丞,“二維向量噴嘴之流場及平板受力模擬分析研究”, 國立成功大學航空太空工程學系碩士論文, 中華民國一百零二年.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE