簡易檢索 / 詳目顯示

研究生: 歐振宇
Ou, Chen-Yu
論文名稱: 24-GHz與60-GHz CMOS收發開關與次諧波及摺疊混頻器毫米波射頻晶片之研製
Research on 24- and 60-GHz Millimeter-wave CMOS T/R Switches, Sub-harmonic and Folded Mixers
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 摺疊式混頻器收發開關次諧波混頻器
外文關鍵詞: folded mixer, sub-harmonic mixer, T/R switch
相關次數: 點閱:85下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究應用於24-GHz與60-GHz接收機之CMOS射頻晶片之研製。設計的晶片包含24-GHz及60-GHz CMOS收發開關、24-GHz雙平衡式次諧波降頻混頻器與摺疊式混頻器,晶片製作均使用國家晶片中心(CIC)提供之標準TSMC CMOS 0.18 μm 製程或TSMC CMOS 0.13 μm 製程,且均使用on-wafer方式進行量測。
    24-GHz收發開關的量測結果顯示之直流偏壓為1.8 V / 0 mA,消耗功率為0 mW,天線端的返回耗損為17.4 dB、接收端的返回耗損為10.8 dB、由於對稱式架構,發射端的返回耗損等同於接收端的返回耗損為10 .8 dB、插入損失為6.0 dB、發射模式時發射端與接收端之間的隔離度為32.4 dB、接收模式時天線端與發射端之間的隔離度為25.8 dB、input P1dB為21.5 dBm、IIP3為32.6 dBm。60-GHz收發開關的量測結果顯示電路之直流偏壓為1.2 V / 0 mA,消耗功率為0 mW,天線端的返回耗損為14.6 dB、接收端的返回耗損為8.4 dB、由於對稱式架構,發射端的返回耗損等同於接收端的返回耗損為8.4 dB、插入損失為11.2 dB、發射模式時發射端與接收端之間的隔離度為34.4 dB、接收模式時天線端與發射端之間的隔離度為21.5 dB、input P1dB為9.5 dBm。
    24-GHz次諧波混頻器量測結果顯示混頻器核心電路之直流偏壓為1.5 V / 2.08 mA,消耗功率為3.12 mW,輸出主動平衡器與緩衝放大器之直流偏壓為1.8 V / 7 mA,消耗功率為12.6 mW。RF端輸入的返回耗損大於8 dB、LO端輸入的返回耗損大於10 dB、IF端輸出的返回耗損大於10 dB、轉換增益為4.01 dB、input P1dB為-12.5 dBm、IIP3為-3.25 dBm、LO-RF隔離度為38 dB,LO-IF隔離度為40 dB、RF-IF隔離度為40.5 dB、2LO-RF隔離度為65.5 dB與2LO-IF隔離度為70 dB。
    24-GHz摺疊式混頻器模擬結果顯示混頻器核心電路之直流偏壓為1 V / 12 mA,消耗功率為12 mW,緩衝放大器之直流偏壓為1 V / 10 mA,消耗功率為10 mW。RF端輸入匹配大於10 dB、IF端輸出的返回耗損大於10 dB、轉換增益為-0.5 dB、input P1dB為-6 dBm、LO-RF隔離度為43.8 dB,LO-IF隔離度為45 dB、RF-IF隔離度為41.2 dB。

    This thesis presents the design of Millimeter-wave CMOS T/R switches, sub-harmonic and folded mixers. The designed CMOS RFICs are fabricated with TSMC CMOS 0.18 μm 1P6M and TSMC 0.13 μm 1P8M standard process. The design of a 24-GHz CMOS T/R switch combines the shunt inductor resonance and body-floating schemes. The T/R switch exhibits a high isolation and good linearity performance. The design of a 24-GHz sub-harmonic mixer and a 24-GHz folded mixer are also presented.

    第一章 緒論 1 1.1 無證照通訊頻帶之研究背景 1 1.2 無線通訊60-GHz WPAN 發展技術與系統簡介 2 1.2.1 毫米波簡介 2 1.2.2 實驗室60-GHz WPAN系統規劃 4 1.3 24-GHz汽車雷達及ISM band(24-24.25 GHz)應用 5 1.4 論文架構 7 第二章 24-GHz及60-GHz CMOS射頻收發開關 (TSMC 0.18 μm、TSMC 0.13 μm) 9 2.1 收發開關運作原理與重要參數介紹 9 2.1.1 PIN Diode switch 10 2.1.2 GaAs MESFET switch 11 2.1.3 CMOS switch 12 2.2 電晶體開關模型分析 13 2.2.1 電晶體小訊號模型 13 2.2.2 電晶體大訊號模型 16 2.3 高隔離度與高線性度之設計 17 2.3.1 並聯電感諧振技術 17 2.3.2 Body-floating技術 18 2.4 24-GHz CMOS射頻收發開關之設計 20 2.4.1 串聯電晶體大小設計 20 2.4.2 並聯電晶體大小設計 22 2.4.3 加入並聯電感諧振技術 23 2.4.4 加入body-floating技術 24 2.4.5 TSMC 0.18 μm電磁模擬環境驗證 25 2.4.6 完整電路設計與佈局考量 26 2.4.7 模擬與量測結果 28 2.5 60-GHz CMOS射頻收發開關之設計 32 2.5.1 完整電路設計與考量 32 2.5.2 模擬與量測結果 35 2.6 結果與討論 39 2.6.1 24-GHz CMOS 射頻收發開關結果與討論 39 2.6.2 60-GHz CMOS 射頻收發開關結果與討論 39 第三章 24-GHz雙平衡式次諧波降頻混頻器 (TSMC 0.18 μm) 41 3.1 混頻器原理與重要參數介紹 41 3.2 各式混頻器架構介紹 43 3.2.1 電阻性混頻器 44 3.2.2 平方律混頻器 45 3.2.3 吉伯特混頻器 46 3.3 24-GHz次諧波混頻器之設計 49 3.3.1 次諧波混頻器混頻原理 50 3.3.2 次諧波混頻器架構 51 3.3.3 24-GHz次諧波混頻器之實現 53 3.3.4 完整電路設計與佈局考量 61 3.3.5 模擬與量測結果 62 3.4 結果與討論 68 第四章 24-GHz雙平衡摺疊式降頻混頻器 (TSMC 0.13 μm) 69 4.1 摺疊式混頻器原理 69 4.2 24-GHz摺疊式混頻器之實現 71 4.3 完整電路設計與佈局考量 76 4.4 模擬與量測結果 77 4.5 結果與討論 82 參 考 文 獻 85

    [1]C. Koh, “The benefits of 60 GHz unlicensed wireless communications,”2004
    [2]http://www.dailywireless.org/2006/11/13/more-70ghz-radios/
    [3]N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, “60 GHz millimeter-wave radio:Principle, technology, and new results,” EURASIP Journal on Wireless Communications and Networking,vol.2007, 2007
    [4http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html
    [5]Y. Kawano, Y. Nakasha, K. Yokoo, S. Masuda, T. Takahashi, T. Hirose, Y. Oishi, and K. Hamaguchi, “RF chipset for impulse UWB radar using 0.13-μm InP-HEMT Technology,” IEEE Transactions Microwave Theory and Techniques, vol. 54, no.12, pp. 4489-4498, Dec. 2006
    [6]Delphi Corporation, “Consultation paper on the introduction of wireless systems using ultra-wideband technology, ”Industry Canada, May 6,2005
    [7]N. Talwalkar, C. P. Yue, and S. S. Wong, “An integrated 5.2GHz CMOS T/R switch with LC-tuned substrate bias,” in IEEE International Solid-State Circuits Conference, pp. 362 - 499 vol. 1, 2003
    [8]K. W. Kobayashi, A. K. Oki, D. K. Umemoto, S. Claxton and D.C. Streit, “GaAs HBT PIN diode attenuators and switches,” IEEE Transactions Microwave Theory and Techniques, vol. 1, pp. 349-352, 1993.
    [9]F. J. Huang and K. O, “A 0.5 μm CMOS T/R switch for 900-MHz wireless application,” IEEE Journal of Solid-State Circuits, vol.36, no.3, pp.486-492, Mar. 2001.
    [10]M. C. Yeh, Z. M. Tsai, R. C. Liu, K. Y. Lin, Y.-T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Transactions Microwave Theory and Techniques, vol.54, no.1, pp.31-39 Jan. 2006.
    [11]Z. Li, and K. K. O, “ 15-GHz fully integrated nMOS switch in a 0.13-μm CMOS process,” IEEE Journal of Solid-State Circuits, vol. 40, no.11,2005
    [12]K.H. Pao, C.-Y. Hsu, H.R. Chuang and C.-Y Chen, “A 3-10GHz Broadband CMOS T/R Switch for UWB Applications,” in European Microwave Conference, 2006
    [13]Y. Jin and C. Nguyen, “Ultra-compact high-linearity high-power fully integrated DC–20-GHz 0.18-μm CMOS T/R switch,” IEEE Transaction on Microwave Theory and Techniques, vol. 55, no. 1, pp.30-36, Jan. 2007.
    [14]P. Piljae, H. S. Dong, J. J. Pekarik, M. Rodwell, C. P. Yue, “A high-linearity, LC-Tuned, 24-GHz T/R switch in 90-nm CMOS,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp.369–372 ,June 2008.
    [15]C. M. Ta, E. Skafidas, and Robin J. Evans, “A 60-GHz CMOS transmit/receive switch,” in Radio Frequency Integrated Circuits (RFIC) Symp. , pp.725-728, June 2007.
    [16]H. C. Jen, Jen and S. C. Rose, R. G. Meyer, “A 2.2 GHz Sub-Harmonic Mixer for Direct-Conversion Receivers in 0.13μm CMOS,” in IEEE International Solid-State Circuits Conference, pp. 1840 - 1849, Feb. 2006.
    [17]M. F. Huang, C. J. Kuo and S. Y. Lee. “A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 2, Feb. 2006.
    [18]B. R. Jackson and C. E. Saavedra, “A CMOS Ku-Band 4x Subharmonic Mixer,” IEEE Journal of Solid-State Circuits, vol.43, no.6, pp.1351-1359, June 2008
    [19]T. H. Wu, S. C. Tseng, C. C. Meng and G. W. Huang, “GaInP/GaAs HBT Sub-Harmonic Gilbert Mixers Using Stacked-LO and Leveled-LO Topologies,” IEEE Transactions on Microwave Theory and Techniques , vol.55, no.5, pp.880-889, May 2007
    [20]高曜煌, 射頻鎖相迴路IC設計, 滄海書局
    [21]王鴻耀,UWB低電壓低雜訊放大器及摺疊式與次諧波式混頻器之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
    [22]鐘豪文,超寬頻UWB無線射頻收發機之寬頻CMOS RFICs的研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
    [23]D. K. Shaffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE Journal of Solid-State Circuit, vol. 32, No. 5, pp.745-759, May 1997.
    [24]T. Y. Yang, and H. K. Chiou, “A 28 GHz sub-harmonic mixer using LO doubler in 0.18-μm CMOS technology,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp.239–242,2006
    [25]H. J. Wei, C. C. Meng, P. Y. Wu and K. C. Tsung, “K-Band CMOS Sub-Harmonic Resistive Mixer With a Miniature Marchand Balun on Lossy Silicon Substrate,” IEEE Microwave and Wireless Components Letters, vol.18, no.1, pp.40-42, Jan. 2008
    [26]R. M. Kodkani and L. E. Larson, “A 24-GHz CMOS Passive Subharmonic Mixer/Downconverter for Zero-IF Applications,” IEEE Transactions on Microwave Theory and Techniques, vol.56, no.5, pp.1247-1256, May 2008
    [27]P. Jinsung, C. H. Lee; B. S. Kim; J. Laskar, “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers,” IEEE Transactions on Microwave Theory and Techniques, vol.54, no.12, pp.4372-4380, Dec. 2006
    [28]X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE Journal of Solid-State Circuit, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [29]E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk, and B. Nauta, “A CMOS switched transconductor mixer” IEEE Journal of Solid-State Circuits, vol.39, no. 8, pp. 1231-1240, Aug. 2004.
    [30]V. Vidojkovic, J. van der Tang, A. Leeuwenburgh, and A. H. M. van Roermund, ”A low-voltage folded-switching mixer in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 6, Jun 2005
    [31]H.-Y. Wang, K.-F. Wei, J.-S. Lin and H.-R. Chuang, “A 1.2-V Low LO-Power 3-5 GHz Broadband CMOS Folded-Switching Mixer for UWB Receiver.” in IEEE Radio Frequency Integrated Circuits Symposium, 2008.
    [32]C.-H. Chen, P.-Y. Chiang, and C. F. Jou, “A Low Voltage Mixer With Improved Noise Figure, ” IEEE Microwave and Wireless Components Letters, vol.19, no.2, pp.92-94, Feb. 2009

    下載圖示 校內:2010-08-20公開
    校外:2010-08-20公開
    QR CODE