| 研究生: |
李俊明 Li, Jiun-Ming |
|---|---|
| 論文名稱: |
爆震波形成與傳遞於不連續反應物之實驗研究 Experimental Study on Detonation Initiation and Transmission Across a Mixture |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang 鍾光民 Chung, Kung-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 波傳遞 、從爆燃轉變到爆震 、過驅爆震波 |
| 外文關鍵詞: | transmission, deflagration-to-detonation transition, overdriven detonation |
| 相關次數: | 點閱:128 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脈衝爆震引擎是未來最受矚目的先進推進系統,為使脈衝爆震引擎付諸實行,則有必要採用前爆震器(較小管徑)先形成爆震波,再將其傳遞至較大截面積的主燃燒室以產生足夠推力。針對前爆震器的設計,主要的考量在於如何減少其體積,然而當爆震波由前爆震器進入主燃燒室時,前爆震器的直徑必須大於一臨界繞射管徑,爆震波方可成功通過面積突張區段,此臨界繞射管徑限制了前爆震器的最小管徑,但是由先前研究指出過驅爆震波可降低臨界繞射管徑,故使用較強的過驅爆震波將可使前爆震器達到適用的尺寸。本研究以火星塞的點火方式,以丙烷為燃料及純氧為氧化劑形成爆燃波,進而轉變成爆震波及過驅爆震波,並以過驅爆震波由原丙烷/純氧的反應物進入丙烷/空氣的反應物,形成強度更高的過驅爆震波。本研究首先以實驗方式觀察從爆燃轉變到爆震的現象,並使用非固定交叉比對函數進行從爆燃到爆震的轉變所需長度的不確定性分析,以取得較精確的前爆震器最短長度尺寸。接著,針對管徑大小對於從爆燃轉變到爆震的影響進行研究,並探討放大因子、燃燒波加速與能量損耗等機制與從爆燃到爆震的轉變所需長度的關係,此階段研究進一步奠定了發展前爆震器的基礎,且有助於瞭解過驅爆震波衰減現象。最後,探討過驅爆震波通過丙烷/純氧與丙烷/空氣的不連續反應物之現象,利用特徵線關係發展一波交互模型與計算過驅爆震波在不連續反應物傳遞後之狀態,由計算結果顯示,吾人必須考慮稀釋波對過驅爆震波的影響,否則過驅爆震波在不連續反應物傳遞後的狀態將被高估。而在實驗結果方面亦顯示爆震波在不連續反應物傳遞後的發展主要與丙烷/純氧區所形成的過驅爆震波與稀釋波強度有關。若要在不連續反應物後達到並維持過驅爆震波狀態,除了先形成高強度的過驅爆震波外,不連續反應物的介面位置應置於接近爆燃波轉變到爆震波位置一倍直徑大小之間。
A predetonator concept has been proposed to ensure a success of an airbreathing pulse detonation engine. Decreasing the volume of a predetonator and the diffraction critical diameter to a realistic size prompts this concept into practice. Here the diffraction critical diameter is the minimum tube diameter for the successful transmission of a detonation through an abrupt area expansion. Previous investigations have shown that the diffraction critical diameter decreases with a higher degree of overdrive of overdriven detonations. In the present research, a series of experiments were performed to achieve a strong overdriven state in a less sensitive mixture by propagating an overdriven detonation via a deflagration-to-detonation transition (DDT) process. First, the propane/oxygen mixtures were used to initiate detonations through a deflagration-to-detonation transition (DDT) process with a weak spark. A nonstationary cross-correlation technique is adopted to define the uncertainty of the DDT run-up distance and further derive the minimum length of a predetonator. The subsequent work focuses on the tube diameter effect on the DDT process. The possible mechanisms associated with the DDT process, such as amplification factor, flame acceleration and energy loss, are correlated the experimental results. In addition, the attenuation of overdriven detonations was also addressed. Finally, experiments were performed wherein a propane/oxygen mixture is separated from a propane/air mixture by a thin diaphragm to study the transmission of an overdriven detonation. Based on the characteristic relations, a simple wave intersection model has been developed to calculate the state of the transmitted detonation. The results showed that the rarefaction effect must be included to ensure that the degree of overdrive of transmitted detonation is not overestimated. The experimental results showed that a transmitted overdriven detonation occurs instantaneously with a strong incident overdriven detonation across a mixture. To achieve and maintain a strong overdriven state across a mixture, the mixture interface may be placed between slightly behind DDT transition location and one tube diameter from DDT transition location in propane/oxygen mixtures.
Aarnio, M. J., Hinkey, J. B., Bussing, T. R. A., 1996, “Multiple Cycle Detonation Experiments During the Development of a Pulse Detonation Engine,” AIAA Paper 96-3263.
Akbar, R., Thibault, P. A., Harris, P. G., Lussier, L.-S., Zhang, F., Murray, S. B., Gerrard, K., 2000, “Detonation Properties of Unsensitized and Sensitized JP-10 and Jet-A Fuels in Air for Pulse Detonation Engines,” AIAA Paper 2000-3592.
Aksamentov, S. M., Manzhaley, V. I., Mitrofanov, V. V., 1993, “Numerical Modeling of Galloping Detonation,” Progress in Astronautics and Aeronautics, Vol. 153, pp. 112-131.
Austin, J. M., 2003, “The Role of Instability in Gaseous Detonation,” Ph.D. thesis, California Institute of Technology, Pasadena, California.
Austin, J. M., Shepherd, J. E., 2003, “Detonations in Hydrocarbon Fuel Blends,” Combustion and Flame, Vol. 132, pp. 73-90.
Baumann, W., Urtiew, P. A., Oppenheim, A. K., 1961, “On the Influence of Tube Diameter on the Development of Gaseous Detonation,” Zeitschrift fr Elektrochemie, Vol. 65, pp. 898-902.
Bendat, J. S., Piersol, A. G., 1986, Random Data: Analysis and Measurement Procedures, 2nd ed., Wiley-Interscience, New York.
Benedick, W., Guirao, C., Knystautas, R., Lee, J. H. S., 1986, “Critical Charge for the Direct Initiation of Detonation in Gaseous Fuel/Air Mixtures,” Progress in Astronautics and Aeronautics, Vol. 106, pp. 181-202.
Berets, D. J., Greene, E. F., Kistiakowsky, G. B., 1950, “Gaseous Detonation. II. Initiation by Shock Waves,” Journal of American Chemistry Society, Vol. 72, pp. 1086-1091.
Bollinger L. E., Fong M. C., Edse, R., 1961, “Experimental Measurements and Theoretical Analysis of Detonation Induction Distances,” ARS Journal, Vol. 31, pp. 588-595.
Brinkley, S. R., Lewis, B., 1959, “On the Transition from Deflagration to Detonation,” Proceedings of the Combustion Institute, Vol. 7, pp. 807-811.
Bull, D. C., Elsworth, J. E., Shuff, P. J., Metcalfe, E., 1982, “Detonation Cell Structures in Fuel/air Mixtures,” Combustion and Flame, Vol. 45, pp. 7-22.
Bussing, T. R. A., Pappas, G., 1994, “An Introduction to Pulse Detonation Engines,” AIAA paper 94-0263.
Bussing, T. R. A., Bratkovich, T. E., Hinkey, J. B., 1997, “Practical implementation of pulse detonation engines,” AIAA paper 97-2748.
Bussing, T. R. A., Lidstone, G., Christofferson, E., Kaemming, T., Jones, G., 2002, “Pulse Detonation Propulsion Proof of Concept Test Article Development,” AIAA paper 2002-3633.
Bjerketvedt, D., Sonju, O. K., Moen, I. O., 1986, “The Influence of Experimental Condition on the Reinitiation of Detonation Across an Inert Region,” Progress in Astronautics and Aeronautics, Vol. 106, pp. 109-130.
Brailovsky, I., Sivashinsky, G. I., 2000, “Hydraulic Resistance as a Mechanism for Detonation-to-Detonation Transition,” Combustion and Flame, Vol. 122, pp. 492-499.
Bychkov, V., Petchenko, A., Akkerman, V., Eriksson, L., 2005, “Theory and Modeling of Accelerating Flames in Tubes,” Physical Review E, Vol. 72, No. 4, pp. 1539-3755.
Ciccarelli, G., Card, J., 2006, “Detonation in Mixtures of JP-10 Vapor and Air,” AIAA Journal, Vol. 44, No.2, pp. 362-367.
Chapman, D. L., 1899, “On the Rate of Explosions in Gases,” Philosophical Magazine, Vol. 47, pp. 90-104. (cited in Fickett and Davis, 2000)
Chue, R. S., Clarke, J. F., Lee, J. H., 1993, “Chapman-Jouguet Deflagrations,” Proceedings of the Royal Society of London, Series A, Vol. 441, pp. 607-623.
Cooper, M., Jackson, S., Shepherd, J. E., 2000, “Effect of Deflagration-to-Detonation Transition on Pulse Detonation Engine Impulse,” Explosion Dynamics Laboratory Report FM00-3, GALCIT.
Cooper, M., Jackson, S., Austin, J., Wintenberger, E., Shepherd, J. E., 2002, “Direct Experimental Impulse Measurements for Detonations and Deflagrations,” Journal of Propulsion and Power, Vol. 18, No. 5, pp. 1033-1041.
Cubbage, P., 1963, “The Protection by Flame Traps of Pipelines Containing Combustible Mixtures,” 2nd Symposium on Chemical Proceedings Hazards, Vol. 29, pp. 29-34.
Dean, A. J., 2007, “A Review of PDE Development for Propulsion Applications,” AIAA paper 2007-985.
Desbordes, D., Lannoy, A., 1991, “Effects of a Negative Step of Fuel Concentration on Critical Diameter of Diffraction of a Detonation,” Progress in Astronautics and Aeronautics, Vol. 133, pp. 170-186.
Doebelin, E.O., 1990, Measurement Systems: Application and Design, McGraw-Hill, Singapore.
Dove, J. E., Wagner, H. Gg., 1960, “A Photographic Investigation of the Mechanisms of Spinning Detonation,” Proceedings of the Combustion Institute, Vol. 8, pp. 589-600.
Dremin, A. N., 1999, Toward Detonation Theory, Springer, New York.
Dupr, G., Knystautas, R., Lee, J. H. S., 1986, “Near-Limit Propagation of Detonation in Tubes,” Progress in Astronautics and Aeronautics, Vol.106, pp. 244-259.
Dupr, G., Praldi, O., Joannon, J., Lee, J. H. S., Knystautas, R., 1991, “Limit Criterion of Detonation in Circular Tubes,” Progress in Astronautics and Aeronautics, Vol.133, pp.156-169.
Edwards, D. H., Thomas, G. O., Nettleton, M. A., 1979, “The Diffraction of a Planar Detonation Wave at an Abrupt Area Change,” Journal of Fluid Mechanics, Vol. 95, pp. 79-96.
Edwards, D. H., Thomas, G. O., Williams, T. L., 1981, “Initiation of Detonation by Steady Planar Incident Shock Waves,” Combustion and Flame, Vol. 43, pp. 187-198.
Eidelman, S., Grossmann, W., Lottati, I., 1990, “Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study,” AIAA paper 90-2420.
Eidelman, S., Grossmann, W., Lottati, I., 1991, “Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept,” Journal of Propulsion and Power, Vol. 7, No. 6, pp. 857-865.
Farinaccio, R., Harris, P., Stowe, R. A., 2002, “Multi-Pulse Detonation Experiments with Propane-Oxygen,” AIAA 2002-4070.
Fickett, W., Davis, W. C., 2000, Detonation Theory and Experiment, Dover, New York.
Fischer, M., 1986, “Safety Aspects of Hydrogen Combustion in Hydrogen Energy Systems,” Int. J. Hydrogen Energy, Vol. 11, No. 9, pp. 593-601.
Fleeman, E. L., 2001, Tactical Missile Design, American Institute of Aeronautics and Astronautics, Reston, Virginia.
Frenklach, M., Lee, J. H., White, J. N., Gardiner, W. C., Jr., 1981, “Oxidation of Hydrogen Sulfide,” Combustion and Flame, Vol. 41, pp. 1-16.
Gavrikov, A. I., Efimenko, A. A., Dorofeev, 2000, “A Model for Detonation Cell Size Prediction from Chemical Kinetics,” Combustion and Flame, Vol. 120, pp. 19-33.
Gavrilenko, T. P., Prokhorov, E. S., 1983, “Overdriven Gaseous Detonations,” Progress in Astronautics and Aeronautics, Vol. 87, pp. 244-250.
Gaydon, A. G., 1974, The Spectroscopy of Flame, Chapman and Hall, London.
Glassman, I., 1996, Combustion, 3rd ed., Academic Press, San Diego.
Gordon, W. E., Mooradian, A. J., Harper, S. A., 1959, “Limit and Spin Effects in Hydrogen-Oxygen Detonations,” Proceedings of the Combustion Institute, Vol. 7, pp. 752-759.
Gordon, S., McBride, B. J., 1971, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman Jouguet Detonation,” NASA SP-273.
Harris, P. G., Farinaccio, R., Stowe, R. A., 2001, “The Effect of DDT Distance on Impulse in a Detonation Tube,” AIAA Paper 01-3467.
Helman, D., Shreeve, R. P., Eidelman, S., 1986, “Detonation Pulse Engine,” AIAA paper 86-1683.
Hoffmann, N., 1940, “Reaction Propulsion by Intermittent Detonative Combustion,” Ministry of Supply, Volkenrode Translation. (cited in Nicholls et al., 1957)
Jouguet, E., 1905, “On the Propagation of Chemical Reactions in Gases,” J. de Mathmatiques Pures et Appliqus, Vol. 7, pp. 347-425. (cited in Fickett and Davis, 2000)
Kailasanath, K., 2000, “Review of Propulsion Applications of Detonation Waves,” AIAA Journal, Vol. 38, No. 9, pp. 1698-1708.
Kailasanath, K., 2003, “Recent Developments in the Research on Pulse Detonation Engines,” AIAA Journal, Vol. 41, No. 2, pp. 145-159.
Kaneshige, M., Shepherd, J. E., “Detonation Database, 1999,” Explosion Dynamics Laboratory Report FM97-8, GALCIT.
Kee, R. J., Grcar, J. F., Smooke, M. D., Miller, J. A., 1985, A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Sandia National Laboratories Report SAND85-8240.
Kiyanda, C. B., Tanguay, V., Higgins, A. J., Lee, J. H. S., 2002, “Effect of Transient Gas Dynamic Processes on the Impulse of Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 18, No. 5, pp. 1124–1125.
Knystautas, R., Lee, J. H. S., Guirao, C. M., 1982, “The Critical Tube Diameter for Detonation Failure in Hydrocarbon-air Mixtures,” Combustion and Flame, Vol. 48, pp. 63-83.
Knystautas, R., Lee, J. H. S., Praldi, O., Chan, C. K., 1986, “Transmission of a Flame from a Rough to a Smooth-Walled Tube,” Progress in Astronautics and Aeronautics, Vol. 106, pp.37-52.
Kogarko, S. M., Zeldovich, Y. B., 1948, Dokl. Akad. Nauk. SSSR 63, 553. (cited in Lee et al., 1986)
Konnov, A. A., 1986, Detailed reaction mechanism for small hydrocarbons combustion, Release 0.4, http://homepages.vub.ac.be/akonnov/
Kuo, K. K., 1986, Principles of Combustion, Wiley, New York.
Kuznetsov, M. S., Dorofeev, S. B., Efimenko, A. A., Alekseev, V. I., Breitung, W., 1997, “Experimental and Numerical Studies on Transmission of Gaseous Detonation to a Less Sensitive Mixture,” Shock Waves, Vol. 7, pp. 297-304.
Kuznetsov, M. S., Alekseev, V. I., Dorofeev, S. B., Matsukov, I. D., Boccio, J. L., 1998, “Detonation Propagation, Decay, and Reinitiation in Nonuniform Gaseous Mixtures,” Proceedings of the Combustion Institute, Vol. 27, pp. 2241-2247.
Kuznetsov, M. S., Alekseev, V. I., Matsukov, I. D., Dorofeev, S. B., 2003, “DDT in Hydrogen-oxygen Mixtures in Smooth Tubes,” 19th Int. Colloquium on the Dynamics of Explosions and Reactive Systems.
Krzycki, L. J., 1962, “Performance Characteristics of an Intermittent Detonation Device,” Naval Weapons Report 7655, China Lake, CA.
Laderman, A. J., Oppenheim, A. K., 1962, “Initial Flame Acceleration in an Explosive Gas,” Proceeding of the Royal Society of London, Series A, Vol. 268, pp.153-180.
Lee, J. H. S., 1977, “Initiation of Gaseous Detonation,” Annual Review of Physical Chemistry, Vol. 28, pp. 75-104.
Lee, J. H. S., Moen, I. O., 1980, “The Mechanism of Transition from Deflagration to Detonation in Vapor Cloud Explosion,” Progress in Energy and Combustion Science, Vol. 6, pp. 359-389.
Lee, J. H. S., 1984, “Dynamic Parameters of Gaseous Detonations,” Annual Review Fluid Mechanics, Vol. 16, pp. 311-336.
Lee, J. H. S., 1986, “On the Transition from Deflagration to Detonation,” Progress in Astronautics and Aeronautics, Vol. 106, pp.3-18.
Lewis, B., von Elbe, G., 1987, Combustion, Flames and Explosion of Gases, 3rd ed., Academic, Orlando, FL.
Li, J., Lai, W. H., Chung, K, 2006, “Tube Diameter effects on Deflagration- to-Detonation Transition of Propane-oxygen Mixtures, Shock Waves, Vol. 16, pp. 109-117.
Lieberman, D. H., Parkin, K. L., Shepherd, J. E., 2002, “Detonation Initiation by a Hot Turbulent Jet for Use in Pulse Detonation Engines,” AIAA Paper 2002-3909.
Lu, F. K., Kim, C. H., 2000, “Detection of wave propagation by cross correlation,” AIAA Paper 00-0676.
Lu, F. K., Meyers, J. M., Wilson, D. R., 2003, “Experimental Study of Propane-Fueled Pulsed Detonation Rocket,” AIAA 2003-6974.
Lu, F. K., 2006, private communication.
Matalon, M., 2005, “The Development of Hydrodynamically Unstable Flames,” 20th International Colloquium on the Dynamics of Explosions.
Markstein, G. H., 1957, “A Shock-Tube Study of Flame Front-Pressure Wave Interaction,” Proceedings of the Combustion Institute, Vol. 6, pp.387-398.
Mitchell, R. E., Kee, R. J., 1982, “SHOCK: A General Purpose Computer Code for Predicting Chemical Kinetic Behavior behind Incident and Reflected Shocks,” Sandia National Laboratories Report SAND82-8205.
Mooradian, A. J., Gordon, W. E., 1951, “Gaseous Detonation. I. Initiation of Detonation,” The Journal of Chemical Physics, Vol. 19, No. 9, pp. 1166-1172.
Moen, I. O., Donato, M., Knystautas, R., Lee, J. H. S., 1981, “The Influence of Confinement on the Propagation of Detonations near the Detonability Limits,” Proceedings of the Combustion Institute, Vol. 18, pp. 1615-1622.
Moen, I. O., Funk, J. W., Ward, S. A., Rude, G. M., Thibault, P. A., 1984, “Detonation Length Scales for Fuel-air Explosives,” Progress in Astronautics and Aeronautics, Vol. 94, pp. 55-79.
Murray, S. B., Zhang, F., Gerrard, K. B., 2003, “Critical Parameters for Pulse Detonation Engine Pre-Detonator Tubes,” 19th International Colloquium on the Dynamics of Explosions.
Nettleton, M. A., 1987, Gaseous Detonations: Their Nature, Effects and Control, Chapman and Hall, New York.
New, T. H., Panicker, P. K., Lu, F. K., Tsai, H. M., 2006, “Experimental Investigations on DDT Enhancements by Shchelkin Spirals in a PDE,” AIAA 2006-552.
Nicholls, J. A., Wilkinson, H. R., Morrison, R. B., 1957, “Intermittent Detonation as a Thrust-Producing Mechanism,” Jet Propulsion, Vol. 27, No. 5, pp. 534-541.
Oppenheim, A. K., Manson, N., Wagner, H. G., 1963, “Recent Progress in Detonation Research,” AAIA Journal, Vol. 1, pp. 2243-2252.
Ott, J. D., Oran, E. S., Anderson, J. D., 1999, “The Interactions of a Flame and Its Self-Induced Boundary layer,” NASA/CR 1999-209401.
Paterson, S., 1953, “Contact Transmission of Detonation,” Proceedings of the Combustion Institute, Vol. 4, pp.468-471.
Pawel, D., Vasatko, H., Wagner, H. Gg., 1969, “Observations on the Initiation of Detonation,” Astronautica Acta, Vol. 14, pp. 509-511.
Reynolds, W. C., 1986, “The Element Potential Method for Chemical Equilibrium Analysis,” Implementation in the Interactive Program STANJAN, 3rd ed., Mechanical Engineering Department, Stanford University.
Roy, G. D., 1999, “Pulsed Detonation Engines for Propulsion,” The Second Asia-Pacific Conference on Combustion, Tainan, Taiwan.
Roy, G.. D., Frolov, S. M., Borisov, A. A., Netzer, D. W., 2004, “Pulse Detonation Propulsion Challenges, Current Status and Future Perspective,” Progress in Energy and Combustion Science, Vol. 30, pp. 545-672.
Saretto, S. R., Lee, S. -Y., Brumberg, J., Conrad, C., Pal, S., Santoro, R. J., 2004, “Studies of Detonation Transition in a Gradual Area Expansion for Multi-Cycle PDE Application,” Proceedings of the Combustion Institute, Vol. 30, pp. 2809-2816.
Schauer, F. R., Miser, C. L., Tucker, K. C., 2005, “Detonation Initiation of Hydrocarbon-Air Mixtures in a Pulsed Detonation Engine,” AIAA Paper 2005-1343.
Schultz, E., Wintenberger, E., Shepherd, J. E., 1999, “Investigation of Deflagration to Detonation Transition for Application to Pulse Detonation Engine Ignition Systems,” Proceeding of 16th JANNAF Propulsion Symposium.
Schultz, E. and Shepherd, J. E., 2000, “Detonation Diffraction through a Mixture Gradient,” Technical Report FM00-1, GALCIT.
Shchelkin, K. I., 1940, Zh. Eksp. Teor. Fiz., 10, 823. (cited in Bychkov et al., 2005)
Shchelkin, K. I., 1959, “Two Kinds of Unstable Combustion,” Soviet Physics, Journal of experimental and theoretical physics, Vol. 36, pp. 600-506. (cited in Dremin, 1999)
Shchelkin, K. I., 1966, “Instability of Combustion and Detonation of Gases,” Sov. Phys. Uspekhi., 8(5), 780. (cited in Lee et al., 1986)
Shepherd, J. E., 1986, “Chemical Kinetics and Cellular Structure of Detonations in Hydrogen Sulfide and Air,” Progress in Astronautics and Aeronautics, Vol. 106, pp. 295-320.
Shepherd, J. E., Lee, J. H. S., 1992, “On the Transition from Deflagration to Detonation,” In Major Research Topics in Combustion, Springer, New York.
Shultz-Grunow, F., 1947, “Gas-Dynamic Investigation of the Pulse-Jet Propulsion Engine,” NACA TM-1131.
Singh, S., Lieberman, D., Shepherd, J. E., 2003, “Combustion Behind Shock Waves,” Western States Section/Combustion Institute, Paper 03F-29.
Sinibaldi, J., Brophy, C., Robinson, J., 2000, “Ignition Effects on DDT Distance in Gaseous Mixtures,” AIAA Paper 2000-3590.
Sinibaldi, J. O., Brophy, C. M., Li, C., Kailasanath, K., 2001, “Initiator Detonation Diffraction Studies in Pulsed Detonation Engines,” AIAA paper 2001-3466.
Sivashinsky, 2002, “Some Developments in Premixed Combustion Modeling,” Proceedings of the Combustion Institute, Vol. 29, pp. 1737-1761.
Sorin, R., Zitoun, R., Desbordes, D., 2006, “Optimization of the Deflagration to Detonation Transition: Reduction of Length and Time of Transition,” Shock Waves, Vol. 15, No. 2, pp. 137-145.
Stamps, D. W., Slezak, S. E., Tieszen, S. R., 2006, “Observations of the Cellular Structure of Fuel-air Detonations,” Combustion and Flame, Vol. 144, pp. 289-298.
Stodola, A., 1927, Steam and Gas Turbines, McGraw-Hill, New York.
Radulescu, M. I., Hanson, R. K., 2005, “Effect of Heat Loss on Pulse-Detonation-Engine Flow Fields and Performance,” Journal of Propulsion and Power, Vol. 21, No. 2, pp. 274-285.
Taylor, G. I., 1950, “The Dynamics of the Combustion Products behind Plane and Spherical Detonation Fronts in Explosives,” Proceedings of the Royal Society of London, Series A, Vol. A200, pp. 235-247.
Taylor, G. I. and Tankin, R. S., 1958, Fundamentals of Gasdynamics, Princeton University Press.
Tieszen, S. R., Stamps, D. W., Westbrook, C. K., Pitz, W. J., 1991, “Gaseous Hydrocarbon-air Detonations,” Combustion and Flame, Vol. 84, pp. 376-390.
Thomas, G. O., Sutton, P., Edwards, D. H., 1991, “The Behavior of Detonation Waves at Concentration Gradients,” Combustion and Flame, Vol. 84, pp. 312-322.
Ul’yanitsky, V. Yu., 1981, “Galloping Mode in a Gas Detonation,” Translated from Fizika Goreniya i Vzryva, Vol. 17, No. 1, pp. 118-124.
Urtiew, P. A., Oppenheim, A. K., 1966, “Experimental Observation of the Transition to Detonation in an Explosion Gas,” Proceedings of the Royal Society of London, Series A, Vol. 295, pp. 13-28.
Vasil’ev, A. A., 2006, “Estimation of Critical Conditions for the Detonation- to-Deflagration Transition,” Combustion, Explosion, and Shock Waves, Vol. 42, No. 2, pp. 205-209.
Veyssiere, B., Arrigoni, M., Kerampran, S., 2002, In Proceedings of the 4th Symposium (Internatinal) on Hazards, Prevention, and Mitigation of Industrial Explosions, 12(7), pp. 265-271. (cited in Roy et al., 2004)
Wang, B. L., Habermann, M., Lenartz, M., Olivier, H., Grnig, H., 2000, “Detonation Formation in H2-O2/He/Ar Mixtures at Elevated Initial Pressures,” Shock Waves, Vol. 10, No. 4, pp. 295-300.
White, F. M., 1974, Viscous Fluid Flow, McGraw-Hill, New York.
Wu, M., Burke, M. P., Son, S. F., Yetter, R. A., 2007, “Flame Acceleration and the Transition to detonation of Stoichiometric Ethylene/Oxygen in Microscale Tubes,” Proceedings of the Combustion Institute, Vol. 31, pp. 2429-2436.
Yatsufusa, T., Ohira, M., Yamamoto, S., Endo, T., Taki, S., 2004, “Development of Liquid-Fuel Initiator for Liquid-Fuel PDE,” AIAA paper 2004-1213.
Zeldovich, Y. B., 1950, “On the Theory of the Propagation of Detonation in Gaseous Systems,” NACA TM 1261.
Zeldovich, Y. B., Kompaneets, A. S., 1960, Theory of Detonation, Academic Press, New York.
Zhu, Y. J., Chao, J., Lee, J. H. S., 2007, “An Experimental Investigation of the Propgagtion Mechanism of Critical Deflagration waves that lead to the Onset of Detonation,” Proceedings of the Combustion Institute, Vol. 31, pp. 2455-2462.
Zipkin, M. A., Lewis, G. W., 1948, “Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine,” NACA TN-1702.