| 研究生: |
徐嘉祥 Hsu, Chia-Hsiang |
|---|---|
| 論文名稱: |
應變速率及相對密度在鐵鎳合金(Fe-2Ni)粉末冶金件高速撞擊性質與微觀結構上的效應分析 Influence of Strain Rate and Relative Density on the Dynamic Impact Properties and Microstructure in Fe-2Ni Sintered Alloy |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 相對密度 、高速撞擊 、Fe-2Ni粉末冶金件 |
| 外文關鍵詞: | Fe-2Ni sintered alloy, relative density, dynamic impact |
| 相關次數: | 點閱:79 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究主要是利用霍普金森高速撞擊試驗機,來探討以田口方法所燒結出之三種不同相對密度Fe-2Ni粉末冶金件於高速撞擊下之塑性變形行為。實驗測試於室溫25℃,以不同的應變速率條件分別為2.5x103s-1、4.0x103s-1、6.0x103s-1及8.1x103s-1下進行。並且利用OM及SEM技術對材料進行微觀分析,更進一步討論應變速率對不同相對密度Fe-2Ni粉末冶金件的動態機械特性及相對微觀組織變化之影響。並引用一合適之材料構成方程式,來描述Fe-2Ni粉末冶金件的常溫高速之塑變行為,以做為工程模擬與分析之用。
實驗結果顯示,應變速率、應變量及相對密度對Fe-2Ni粉末冶金件的機械性質影響甚鉅。在相同應變量下,應變速率增加,其塑流應力值、應變速率敏感性係數及理論溫升量隨著應變速率的增加而上升,而加工硬化率及熱活化體積則有相反的趨勢。在相同應變速率下,隨著密度的增加,其塑流應力、應變速率敏感性係數及理論溫升量皆隨著應變速率的增加而上升,而加工硬化率及熱活化體積亦呈相反的趨勢。由微觀組織觀察,來瞭解不同製程條件所燒結出之Fe-2Ni粉末冶金件之微觀組織對整體試件在高應變速率作用下之影響。發現本實驗的三種密度試件,在應變速率超過4.0x103s-1時,會有絕熱剪切帶的破壞形貌產生。絕熱剪切帶的生成表示試件局部溫升量的大量上升,因此可觀察到局部區域有動態再結晶的現象。最後,藉由Khan-Huang-Liang模式之構成方程式,其可以很精確的來描述相對密度85%至95%範圍內之Fe-2Ni粉末冶金件於常溫高速撞擊下之塑變行為。
This study uses the split-Hopkinson bar to investigate the plastic deformation behaviour of Fe-2Ni sintered alloys under high strain rate loading. The Taguchi method is used to design the sintering process factors such that the Fe-2Ni alloy specimens have different densities. The loading tests are performed at room temperature under strain rates ranging from 2.5x103s-1 to 8.1x103s-1. OM and SEM techniques are used to analyze the microstructureal characteristics of the deformed specimens in order to identify the correlating between the mechanical and microstructural properties of Fe-2Ni sintered alloys with different sintering densities. The experimental results indicate that the mechanical properties of the Fe-2Ni sintered alloys depend significantly on the strain rate, strain and sintering densities. Under constant strain, the flow stress, strain rate sensitivity and theoretical raised temperature increase with increasing strain rate, while the work hardening rate and activation volume decrease. At a constant strain rate, the flow stress, strain rate sensitivity and theoretical raised temperature increase with increasing relative density, while the work hardening rate and activation volume decrease. Microstructural obsernations reveal that the sintering process factors influence the effect of dynamic loading on the microstructures of the sintered alloys. Microstructural analysis reveals that adiabatic shear bands are formed when the strain rate exceeds 4.0x103s-1. The formation of these adiabatic shear bands suggests that localized regions of extremely high temperature are generated. It is observed that the local high temperature causes a dynamic recrystallization effect. Finally, applying the Khan-Huang-Liang constitutive equation with the experimentally determined specific material parameters provides accurate predictions of the plastic flow behaviour of Fe-2Ni sintered alloys with relative densities ranging from 85% to 95% under the current test conditions.
1. T. Y. Chan and S. T. Lin, “Sintering of Elemental Carbonyl Iron and Carbonyl Nickel Powder Mixtures,” Journal of Materials Science, Vol. 32, No. 8, April , pp. 1963-1967, 1997.
2. H. Zhang and R. M. German, “The Role of Nickel in Iron Powder Injection Molding,” International Journal of Powder Metallurgy, Vol. 27, No. 3, pp.249-254, 1991.
3. M. Nakamura and K. Tsuya, “Effect of Heat Treatment on Structure and Mechanical Properties of Sintered Fe-Ni Alloys,” Powder Metallurgy, Vol. 26, No. 3, pp. 149-154, 1983.
4. H. Zhang and R. M. German, “Homogenization and Microstructure Effects on the Properties of Injection Molded Fe-2Ni Steel,” Metallurgical Transactions A, Vol. 23, pp.377-382, January 1992.
5. H. Zhang, R. M. German, K.F. Hens and D. Lee, “Sintering Temperature and the Mechanical Properties of Injection Molded Fe-2Ni Steel,” Powder Metallurgy International, Vol. 22, No. 6, pp. 15-18, December, 1990.
6. K. V. Sudhakar, P. Sampathkumaran and E. S. Dwarakadasa, “Dry Sliding Wear in High Density Fe-2%Ni Based P/M Alloys,” Wear, Vol. 242, No. 1, pp. 207-212, 2000.
7. S. T. Lin and R. M. German, “Mechanical Properties of Fully Densified Injection-Molded Carbonyl Iron Powder,” Metallurgical Transactions A, Vol. 21, pp. 2531-2538, 1990.
8. Capus and M. Joseph, “Advanced PM Alloys Ready to Challenge Wrought Steels,” PM Technology Trends, Vol. 51, pp. 17-19, 1996.
9. F. Chagnon and Y. Trudel, “Effect of Compaction Temperature on Sintered Properties of High Density P/M Materials,” Advances in Powder Metallurgy & Particulate Materials, pp. 5/13-5/14, 1995.
10. B. M. Butcher and C. K. Karnes, “Strain Rate Effects in Metals,” Journal of Applied Physics, Vol. 37, pp. 402-411, 1966.
11. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates,” Experimental Mechanics, Vol. 6, pp. 395-402, 1966.
12. D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Metals Applicable at High Strain Rate,” Journal of Applied Physics, Vol. 51, No. 3, pp. 1498-1504, 1980.
13. A. Salak, Ferrous Powder Metallurgy, Cambridge International Science Pub., pp. 1-4, 1980.
14. K. S. Narasimhan, “Sintering of Powder Mixtures and the Growth of Ferrous Powder Metallurgy,” Materials Chemistry and Physics, Vol. 67, pp. 56-65, 2001.
15. 黃坤祥,粉末冶金學,頁,1-7,中華民國粉末冶金協會,民國九十年。
16. 汪建民,粉末冶金技術手冊,頁,18-23,中華民國粉末冶金協會,民國八十年。
17. R. A. Priemon and J. L. Cornillot, 1983 Annual Book of ASTM Standards, American Society for Testing and Materials, Vol. 2, pp. 59-67, 1983.
18. A. Salak, Ferrous Powder Metallurgy, Cambridge International Science Pub., pp. 62-102, 1980.
19. 汪建民,粉末冶金技術手冊,頁,101-103,中華民國粉末冶金協會,民國八十年。
20. J. S. Hirschhorn, Introduction to Powder Metallurgy, American Powder Metallurgy Institute, pp. 155-271, 1969.
21. 黃坤祥,粉末冶金學,頁,250,中華民國粉末冶金協會,民國九十年。
22. H. Zhang and R. M. German, “Homogeneity and Properties of Injection Moulded Fe-Ni Alloys,” Metal Powder Report, Vol. 56, No. 6, pp. 18-22, 2001.
23. V. Tracy, “Current Status of Sintered Nickel Steels,” Metal Powder Report, Vol. 48, No. 1, pp. 28-36, 1993.
24. I. Bertilsson and B. Karlsson, “Mechanical Properties of Sintered Steels,” Scandinavian Journal of Metallurgy, Vol. 11, pp. 267-275, 1982.
25. T. J. Griffiths, R. Davies and M. B. Bassett, “Analytical Study of Effects of Pore Geometry on the Tensile Strength of Porous Materials,” Powder Metallurgy, Vol. 22, pp.119-123, 1979.
26. 黃忠良,多孔材料學,頁,191-199,復漢出版社,民國七十九年。
27. B. Budiansky, “Thermal and Thermoelastic Properties of Isotropic Composites,” Journal of Composite Materials, Vol. 4, pp. 286-295, 1970.
28. H. N. Han, Y. G. Lee, K. H. Oh and D. N. Lee, “Analysis of Hot Forging of Porous Metals,” Materials Science and Engineering A, Vol. 206, No. 1, pp. 81-89, 1996.
29. J. L. Chiddister and L. E. Malvern, “Compression-Impact Testing of Aluminum at Elevated Temperatures,” Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
30. M. A. Meyers, Dynamic Behavior of Materials, John Wiely & Sons, pp. 23-65, 1994.
31. J. A. Zukas, High Velocity Impact Dynamics, John Wiely & Sons, pp. 139-156, 1990.
32. R. D. Curran, L. Seaman and D. A. Shockey, Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications, pp. 129-167, 1980.
33. ASM Handbook Committee, Metals Handbook, American Society for Metals, pp. 215-230, 1978.
34. J. D. Campbell, “Dynamic Plasticity-Macrosopic and Microscopic Aspects, ” Materials Science and Engineering A, Vol. 12, pp. 3-21, 1973.
35. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
36. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
37. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics, Vol. 13, pp. 41-53, 1965.
38. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, N0. 4, pp. 1863-1869, 1967.
39. A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1-Yield Criteria and Flow Rules for Porous Ductile Media,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 99, No. 1, pp. 2-15, 1977.
40. V. Tvergaard, “Influence of Voids on Shear Band Instabililties Under Plane Strain Conditions,” International Journal of Fracture, Vol. 17, pp. 389-407, 1981.
41. V. Tvergaard and A. Needleman, “Effect of Material Rate Sensitivity on Failure Modes in the Charpy V-Notch Test,” Journal of Mechanics and Physics of Solids, Vol. 34, No. 3, pp.213-241, 1986.
42. W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.
43. J. D. Campbell, A. M. Eleiche and M. C. C. Tsao, “Fundamental Aspects of Structural Alloy Design,” Plenum Publishing Corp. New York, pp. 545-563, 1977.
44. G. R. Johnson and W. H. Cook, In Processing of Seventh International Symposium on Ballistics, The Netherlands, pp. 541-562, 1983.
45. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
46. F. J. Zerilli and R. W. Armstrong, “The Effect of Dislocation Drag on the Stress-Strain behavior of F.C.C. Metals,” Acta Metallurgical et Materialia, Vol. 40, No. 8, pp.1803-1808, 1992.
47. A. S. Khan and H. Zhang, “Mechanically Alloyed Nanocrystalline Iron and Copper Mixture: Behavior and Constitutive Modeling Over A Wide Range of Strain Rates,” International Journal of Plasticity, Vol. 16, pp. 1477-1492, 2000.
48. R. Liang and A. S. Khan, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures,” International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.
49. 李輝煌,田口方法品質設計的原理與實務,頁,27-274高立圖書有限公司,民國九十二年。
50. M. G. da Silva and K. T. Ramesh, “The Rate-dependent Deformations of Porous Pure Iron,” International Journal of Plasticity, Vol. 13, pp. 587-610, 1997.
51. G. E. Dieter, Thermally Activated Deformation, Mechanical Metallurgy, pp. 310-315, 1988.
52. Y. Bai and B. Dodd, Adiabatic Shear Band, Pergamon Press, Oxford, pp. 1-10, 1992.
53. E. Bayraktar and S. Altintas, “Some Problems in Steel Sheet Forming Processes,” Journal of Materials Processing Technology, Vol. 80-81, pp. 83-89, 1998.
54. O. Kubaschewski and J. A. Catterall, Thermochemical Data of Alloys, Pergamon Press, pp. 130-132, 1956.
55. R. W. K. Honeycombe and H. K. D. H. Bhadeshia, Steels Microstructure and Properties 2nd Edition, Edward Arnold, pp. 48-51, 1995.
56. 王柏凱,”鐵錳鋁合金之高速撞擊與破壞行為研究”,國立成功大學機械工程學研究所碩士論文,頁54,2004。
57. R. W. K. Honeycombe and H. K. D. H. Bhadeshia, Steels Microstructure and Properties 2nd Edition, Edward Arnold, pp. 55, 1995.
58. S. Kim and Y. Yoo, “Dynamic Recrystallization Behavior of 304 Stainless Steel,” Materials Science and Engineering A, Vol. 311, pp. 108-113, 2001.
59. 周建綱,”鐵鎳合金(Fe-2Ni)粉末冶金件之高速變形行為分析”,國立成功大學機械工程學研究所碩士論文,頁68,2004。
60. V. F. Nesterenko, M. A. Meyers, J. C. LaSalvia, M. P. Bondar, Y. J. Chen and Y. L. Lukyanov, “Shear Localization and Recrystallization in High-strain, High-strain-rate Deformation of Tantalum,” Materials Science and Engineering A, Vol. 229, pp. 23-41, 1997.
61. Q. Li, Y. B. Xu, Z. H. Lai, L. T. Shen and Y. L. Bai, “Dynamic Recrystallization Induced by Plastic Deformation at High Strain Rate in a Monel Alloy,” Materials Science and Engineering A, Vol. 276, pp. 250-256, 2000.
62. Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Liu, Y. L. Bai and M. A. Meyers, “Shear Localization and Recrystallization in Dynamic Deformation of 8089 Al-Li Alloy,” Materials Science and Engineering A, Vol. 299, pp. 287-295, 2001.