簡易檢索 / 詳目顯示

研究生: 林佳慶
Lin, Chia-Ching
論文名稱: 諧波齒輪運動分析-使用Runge-kutta法
Harmonic Drives Movement Analysis-Using the Runge-Kutta Method
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 46
中文關鍵詞: 諧波齒輪常微分方程Euler方法Runge-Kutta方法
外文關鍵詞: harmonic gear, ordinary differential equation, Euler method, Runge-Kutta method
相關次數: 點閱:145下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 諧波齒輪由於改善了傳統減速機的缺點,在工業被廣泛使用。本文介紹新的齒輪構造,針對描述剛性齒輪的齒型,目標在具體生產出齒輪的齒形。主旨是分析同軸共平面作剛體運動的兩齒輪,假設已知齒輪的接觸條件,並使用常微分方程建構數學模型來描述齒輪運動。
    本研究目的在於分析諧波齒輪的運動,對於平面剛體運動下的諧波齒輪,給定接觸條件,求出運動的常微分方程,而建構出齒輪運動的數學模型。並藉由剛體運動之數學模型來分析齒輪運動問題。我們設定理想的運動,以Runge-Kutta數值方法,反解剛輪齒形,設計數值方法,並求數值解與分析解的精確度與收斂情形。
    建議使用二階Runge-Kutta法來求解本文的常微分方程,因為此方法編寫程式的複雜度較低。

    Harmonic gear is widely used in industry, since it improves the shortcomings of the traditional reducer. In this thesis, we introduce new types of gears. The tooth profile of the circular spline is described, and the tooth profile of the gear is introduced. For the harmonic gears under plane rigid body motion, given the contact conditions. The ordinary differential equation of motion is obtained, and the mathematical model of gear movement is constructed. We set the ideal motion, using the Runge-Kutta numerical method, solve the tooth profile of the circular spline. Give the numerical method, and find the accuracy and convergence of the numerical solution and analytical solution.
    It is suggested to use the second-order Runge-Kutta method to solve the ordinary differential equation of this paper, because this method is simple and efficient.

    摘 要 ..............................................I 誌 謝 ............................................ VII 目 錄 ........................................... VIII 圖目錄 ............................................. X 表目錄 ............................................ XI 第一章 緒論.........................................1 1.1 前言.........................................1 1.1.1 諧波齒輪的發明.................................1 1.1.2 構造簡介......................................1 1.2 諧波齒輪的應用與研究..........................3 1.3 本文大綱.....................................5 第二章 數學模型.....................................6 2.1 接觸條件........................................6 2.2 常微分方程......................................9 2.2.1 已知剛輪、滑輪與發波器形狀的運動分析.............9 2.2.2 已知剛輪、滑輪形狀求理想的發波器形狀............13 2.2.3 已知剛輪、發波器形狀求理想的滑輪齒形............16 2.2.4 已知滑輪、發波器形狀求理想的剛輪齒形............19 第三章 數值方法....................................22 3.1 Euler 數值方法.................................22 3.2 Runge-Kutta 數值方法...........................23 3.3 綜合比較.......................................26 第四章 數值方法的實現與誤差分析......................27 4.1 數值實例.......................................27 4.2 誤差分析.......................................33 第五章 結論........................................40 參考文獻............................................44

    [1]D.E. Tuttle, Understanding and modeling the behavior of a harmonic drive gear transmission, Technical Report, MIT Artificial Intelligence Laboratory, 1992.

    [2]S. Ishikawa, Wave gear drive, EP Patent, 1996.

    [3]V. Kosse, Analytical investigation of the change in phase angle between the wave generator and the teeth meshing zone in high-torque mechanical harmonic drives, Mechanics, 1997.

    [4]H.D. Taghirad, Robust torque control of harmonic drive systems, Technical report, IEEE Transactions on Robotics and Automation, 1997.

    [5]H. Dong, K.L. Ting, D. Wang, Kinematic fundamentals of planar harmonic drives, J. Mech. Des., 2011.

    [6]H. Dong, K.L. Ting, D. Wang, Kinematic effect of the compliant cup in harmonic drives, J. Mech. Des., 2011.

    [7]H. Dong, Z. Zhu, W. Zhou, Z. Chen, Dynamic simulation of harmonic gear drives considering tooth profiles parameters optimization, J. Comput., 2012.

    [8]Chao Zhang, Shaoping Wang, Zimeng Wang, Xingjian Wang, An accelerated life test model for harmonic drives under a segmental stress history and its parameter optimization, Chinese Journal of Aeronautics, 2015.

    [9]John H. Mathews and Kurtis K. Fink, Numerical Methods Using Matlab, 4 th edition,Prentice-Hall, New Jersey, 2004.

    [10]William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical recipes in Fortran 77, 2 th edition, 1992.

    [11]C.F., Gerald, P.O., Applied numerical analysis, Wheatly, 6th edition, 1999.

    [12]Robert L. Norton 著;謝慶雄 譯,機構學,第三版,高立圖書有限公司,2005.

    [13]顏鴻森,吳隆庸 著,機構學,第四版,台灣東華,2014.

    [14]洪維恩,Matlab 程式設計,第二版,旗標,2015.

    [15]張智星,Matlab 程式設計.入門篇,初版,碁峰資訊,2010.

    [16]洪維恩,C 語言教學手冊,第四版,旗標,2016.

    [17]機械設計編輯委員會 著;張振龍,李宗乙,陳文中 編修,機械設計,第二版,新文京開發出版,2016.

    [18]陳政逸,齒輪運動分析─使用常微分方程,國立成功大學應用數學所碩士論文,2011.

    [19]陳怡婷,傘齒輪運動分析─使用常微分方程,國立成功大學應用數學所碩士論文,2013.

    [20]程廷瑋,諧波齒輪運動分析,國立成功大學應用數學所碩士論文,2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE