| 研究生: |
沈大為 Shen, Ta-Wei |
|---|---|
| 論文名稱: |
幼年期聲音暴露後大白鼠對弱聲誘發呼吸干擾反射之改變 Changes of a low-intensity acoustic reflex (acoustic perturbation of breathing) in rats after early sound exposure |
| 指導教授: |
潘偉豐
Poon, Paul Wai-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 聽覺對呼吸的干擾 、耳鳴 、神經可塑性 、早期聲音刺激 |
| 外文關鍵詞: | acoustic perturbation of breathing, tinnitus, neural plasticity, early-sound exposure |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去對於中高強度聲音刺激的聽覺反射已經有相當好的研究(例如驚嚇反射、頭部轉向、耳廓反射以及鬍鬚凍結反射),但在低強度聲音刺激下的聽覺反射則尚有待探討。耳鳴是一種常見的聽力障礙,通常與低強度聽覺有關(在耳鳴中的幻聲強度約略為30分貝或更低)。在此我們推測如果存在低強度的聽覺反射將有助於在實驗性耳鳴模式中客觀的評估動物其聽力損失(或屏蔽)。耳鳴之現行理論肇因於聽力損失導致中樞神經增益效應以補償受損之聽力,而產生聽覺過敏和幻聲感知(耳鳴)等副作用。幻聽會對弱聲刺激產生屏蔽效應(或聽力損失)的感知而與耳鳴類似。基於此,實驗性耳鳴評估之行為模式,包含學習行為的條件反射(polydypsia avoidance)和前脈衝抑制驚嚇反射(prepulse inhibition)。但兩種試驗都具有缺點:(A)需要時間訓練動物以及(B)運用高強度聲音刺激(>90分貝,與耳鳴特性不相似)。因此需要發展出運用低強度聲音刺激來進行簡單與客觀的聽力評估方法。為此,我們開發了一套數位化影像行為試驗模式用來偵測清醒大鼠對於低強度聲音刺激所誘發之聽覺反射。我們以Matlab為基礎設計一套影像分析軟體用來量化大鼠細微的身體動作。我們發現在正常的大鼠中,對於弱聲刺激的突現會使規律的呼吸運動產生偶然的擾動。藉由觀察大鼠胸、腹部的呼吸運動能偵測到此擾動,我們稱為”聽覺對呼吸的干擾”(acoustic perturbation of breathing, APB)。我們還發現:並非所有用來測試的聲音種類都能誘導APB。例如以粗糙表面摩擦效果最好。於實驗開始前,實驗組的大鼠於產後第四周中每日夜間以中強度單頻音給予刺激(4千赫單頻音、65分貝、每日八小時)。在過去同實驗室的研究指出:對幼鼠給予早期聲音刺激會使位於大腦聽覺皮層、中腦以及其下行聽覺路徑的神經細胞增大,如同耳鳴所產生的現象。對比於其他耳鳴動物模式如過量水楊酸與高音量暴露,早期聲音刺激模式(除了其他神經可塑性的變化)較接近常見於人類因老化產生的耳鳴(人類終其一生常暴露於中強度聲音下)。我們發現受過早期聲音刺激的大鼠於低強度聲音刺激中其APB會下降而其他的聽覺反射則否,代表此耳鳴模式之動物對低音量聽覺的損失(或遮蔽)與耳鳴類似。我們於此首次報告:APB是一種可能有效的工具用於低強度聲刺激的反射偵測有助於評估因耳鳴所造成之低強度聽覺損失。
While acoustic reflexes to loud sounds are well studied (viz., startle, head orienting, pinna, and vibrissa freezing responses), those to soft sounds remain unknown. Tinnitus, a leading hearing disorder, typically affects low intensity hearing (i.e., phantom sound perception of <30 dB SPL). Here we speculate that low-intensity acoustic reflexes, if in existence, could reflect the phenomenon of masking (or hearing loss) that accompanies tinnitus. The prevailing theory of tinnitus is that an initial hearing loss leads to an increased central gain to compensate the impaired intensity coding, with the unwanted side-effect of a phantom sound percept (tinnitus) and hyperacusis. The phantom sound produces a masking effect (or hearing loss) of soft sounds perceived similar to the tinnitus percept. Based on such masking, experimental tinnitus is assessed with either the traditional polydypsia avoidance or the more recent prepulse inhibition of acoustic startle reflex. These two methods have shortcomings like (a) time-consuming behavioral training or (b) the use of loud sound stimuli, hence inappropriate for studying the low level hearing in tinnitus. Methods that are simple and objective to estimate low intensity hearing are therefore in demand. Here, we developed a behavioral setup equipped with a digital imaging system designed to detect in awake rats the acoustic reflexes induced by soft sounds. Custom-made software was written to quantify the subtle body movements by optimizing the region of interest in the rat images. We found that for a normal rat, following the sudden presentation of a soft sound, its regular breathing pattern showed occasional perturbations. The perturbation in breathing was identified as an arrest in the respiratory-driven regular displacement of chest or abdomen. We coined this response the ‘acoustic perturbation of breathing (APB)’. We also found that not all sounds we tested had the same effectiveness in inducing APB: e.g., the rubbing sound was the most effective among three tested stimuli. The rubbing sound was therefore adopted as the stimulus for this study. Before the experiment, rats in the exposed group were first exposed during their early life (postnatal week-4) to a moderate level tone (4 kHz, 65 dB SPL, 8 hrs/day). From the previous studies of this laboratory, the same sound-exposure has led to enlarged neurons in the auditory cortex, midbrain and the descending system, consistent with the presence of tinnitus. Compared with other tinnitus-models (e.g., loud sound exposure, salicylate overdose), this early sound-exposure mode, apart from other accompanying neural plasticity, is likely closer to the human case as most tinnitus occurs with senility (likely due to, among other factors, the life-long sound exposure at moderate levels). APB in early sound-exposed rats was depressed when compared with the control, while other acoustic reflexes were not. We interpret this finding in the exposed animals as a masking of low intensity hearing likely associated with tinnitus. We conclude that the APB (reported here for the first time) is useful for assessing low intensity hearing loss associated with tinnitus.
Adjamian, P., Sereda, M., and Hall, D.A. (2009). The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hearing research 253, 15-31.
Atik, A. (2014). Pathophysiology and treatment of tinnitus: an elusive disease. Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India 66, 1-5.
Baekey, D.M., Molkov, Y.I., Paton, J.F., Rybak, I.A., and Dick, T.E. (2010). Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respiratory physiology & neurobiology 174, 135-145.
Bauer, C.A., Brozoski, T.J., Holder, T.M., and Caspary, D.M. (2000). Effects of chronic salicylate on GABAergic activity in rat inferior colliculus. Hearing research 147, 175-182.
Bauer, C.A., Turner, J.G., Caspary, D.M., Myers, K.S., and Brozoski, T.J. (2008). Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. Journal of neuroscience research 86, 2564-2578.
Beitel, R.E., and Kaas, J.H. (1993). Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of neurophysiology 70, 351-369.
Bolles, R., ; Collier, A. (1976). The effect of predictive cues on freezing in rats. Animal Learning & Behavior 4, 6-8.
Cacace, A.T., Brozoski, T., Berkowitz, B., Bauer, C., Odintsov, B., Bergkvist, M., Castracane, J., Zhang, J., and Holt, A.G. (2014). Manganese enhanced magnetic resonance imaging (MEMRI): a powerful new imaging method to study tinnitus. Hearing research 311, 49-62.
Campo, P., Venet, T., Thomas, A., Cour, C., Castel, B., Nunge, H., and Cosnier, F. (2013). Inhaled toluene can modulate the effects of anesthetics on the middle-ear acoustic reflex. Neurotoxicology and teratology 35, 1-6.
Darrow, K.N., Maison, S.F., and Liberman, M.C. (2006). Cochlear efferent feedback balances interaural sensitivity. Nature neuroscience 9, 1474-1476.
Eggermont, J.J., and Roberts, L.E. (2004). The neuroscience of tinnitus. Trends in neurosciences 27, 676-682.
Giraud, A.L., Chery-Croze, S., Fischer, G., Fischer, C., Vighetto, A., Gregoire, M.C., Lavenne, F., and Collet, L. (1999). A selective imaging of tinnitus. Neuroreport 10, 1-5.
Goodhill, V. (1954). Directional free field startle-reflex audiometry. AMA archives of otolaryngology 59, 176-177.
Groff, J.A., and Liberman, M.C. (2003). Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. Journal of neurophysiology 90, 3178-3200.
Guinan, J.J., Jr. (2006). Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear and hearing 27, 589-607.
Hoffman, H.S., and Searle, J.L. (1965). ACOUSTIC VARIABLES IN THE MODIFICATION OF STARTLE REACTION IN THE RAT. Journal of comparative and physiological psychology 60, 53-58.
Jastreboff, P.J. (1990). Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neuroscience research 8, 221-254.
Jones, A.E., Ruhland, J.L., Gai, Y., and Yin, T.C. (2014). Simultaneous comparison of two sound localization measures. Hearing research 317c, 33-40.
Kaltenbach, J.A. (2007). The dorsal cochlear nucleus as a contributor to tinnitus: mechanisms underlying the induction of hyperactivity. Progress in brain research 166, 89-106.
Kaltenbach, J.A. (2011). Tinnitus: Models and mechanisms. Hearing research 276, 52-60.
Kaltenbach, J.A., Zacharek, M.A., Zhang, J., and Frederick, S. (2004). Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neuroscience letters 355, 121-125.
Knipper, M., Zimmermann, U., and Muller, M. (2010). Molecular aspects of tinnitus. Hearing research 266, 60-69.
Lang, P.J., Bradley, M.M., and Cuthbert, B.N. (1990). Emotion, attention, and the startle reflex. Psychological review 97, 377-395.
Lin, C.K., and Lin, C.C. (2012). Work of breathing and respiratory drive in obesity. Respirology (Carlton, Vic) 17, 402-411.
Liu, J., Li, X., Wang, L., Dong, Y., Han, H., and Liu, G. (2003). Effects of salicylate on serotoninergic activities in rat inferior colliculus and auditory cortex. Hearing research 175, 45-53.
Lockwood, A.H., Salvi, R.J., Coad, M.L., Towsley, M.L., Wack, D.S., and Murphy, B.W. (1998). The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50, 114-120.
Lu, H.P., Syka, J., Chiu, T.W., and Poon, P.W. (2014). Prolonged sound exposure has different effects on increasing neuronal size in the auditory cortex and brainstem. Hearing research 314, 42-50.
Møller, A. (1974). The Acoustic Middle Ear Muscle Reflex. In Auditory System, W. Keidel, and W. Neff, eds. (Springer Berlin Heidelberg), pp. 519-548.
Margolis, R.H., and Levine, S.C. (1991). Acoustic reflex measures in audiologic evaluation. Otolaryngologic clinics of North America 24, 329-347.
Mirz, F., Pedersen, B., Ishizu, K., Johannsen, P., Ovesen, T., Stodkilde-Jorgensen, H., and Gjedde, A. (1999). Positron emission tomography of cortical centers of tinnitus. Hearing research 134, 133-144.
Mitchell, R.A., and Berger, A.J. (1975). Neural regulation of respiration. The American review of respiratory disease 111, 206-224.
Molkov, Y.I., Bacak, B.J., Dick, T.E., and Rybak, I.A. (2013). Control of breathing by interacting pontine and pulmonary feedback loops. Frontiers in neural circuits 7, 16.
Moller, A.R. (1994a). Auditory neurophysiology. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society 11, 284-308.
Moller, A.R. (2007). Tinnitus: presence and future. Progress in brain research 166, 3-16.
Moller, M.B. (1994b). Audiological evaluation. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society 11, 309-318.
Mulders, W.H., and Robertson, D. (2009). Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164, 733-746.
Mulders, W.H., Seluakumaran, K., and Robertson, D. (2010). Efferent pathways modulate hyperactivity in inferior colliculus. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 9578-9587.
Norena, A.J. (2011). An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neuroscience and biobehavioral reviews 35, 1089-1109.
Poole, D.C., and Ferreira, L.F. (2007). Oxygen exchange in muscle of young and old rats: muscle-vascular-pulmonary coupling. Experimental physiology 92, 341-346.
Robinson, B.L., and McAlpine, D. (2009). Gain control mechanisms in the auditory pathway. Current opinion in neurobiology 19, 402-407.
Rybak, I.A., Abdala, A.P., Markin, S.N., Paton, J.F., and Smith, J.C. (2007). Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Progress in brain research 165, 201-220.
Salvi, R.J., Wang, J., and Ding, D. (2000). Auditory plasticity and hyperactivity following cochlear damage. Hearing research 147, 261-274.
Seluakumaran, K., Mulders, W.H., and Robertson, D. (2008). Unmasking effects of olivocochlear efferent activation on responses of inferior colliculus neurons. Hearing research 243, 35-46.
Smith, J.C., Abdala, A.P., Koizumi, H., Rybak, I.A., and Paton, J.F. (2007). Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. Journal of neurophysiology 98, 3370-3387.
Sokolov, E.N. (1963). Higher nervous functions; the orienting reflex. Annual review of physiology 25, 545-580.
Stach, B.A. (1987). The acoustic reflex in diagnostic audiology: from Metz to present. Ear and hearing 8, 36S-42S.
Suga, N., Gao, E., Zhang, Y., Ma, X., and Olsen, J.F. (2000). The corticofugal system for hearing: recent progress. Proceedings of the National Academy of Sciences of the United States of America 97, 11807-11814.
Sun, W., Lu, J., Stolzberg, D., Gray, L., Deng, A., Lobarinas, E., and Salvi, R.J. (2009). Salicylate increases the gain of the central auditory system. Neuroscience 159, 325-334.
Tate, C.A., and Holtz, R.W. (1998). Gender and fat metabolism during exercise: a review. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee 23, 570-582.
Turner, J.G., Brozoski, T.J., Bauer, C.A., Parrish, J.L., Myers, K., Hughes, L.F., and Caspary, D.M. (2006). Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behavioral neuroscience 120, 188-195.
Turner, J.G., and Parrish, J. (2008). Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats. American journal of audiology 17, S185-192.
Venet, T., Rumeau, C., Campo, P., Rieger, B., Thomas, A., and Cour, C. (2011). Neuronal circuits involved in the middle-ear acoustic reflex. Toxicological sciences : an official journal of the Society of Toxicology 119, 146-155.
Vertes, R.P. (1984). Brainstem control of the events of REM sleep. Progress in neurobiology 22, 241-288.
Wang, H.T., Luo, B., Huang, Y.N., Zhou, K.Q., and Chen, L. (2008). Sodium salicylate suppresses serotonin-induced enhancement of GABAergic spontaneous inhibitory postsynaptic currents in rat inferior colliculus in vitro. Hearing research 236, 42-51.
Wu, T., Lv, P., Kim, H.J., Yamoah, E.N., and Nuttall, A.L. (2010). Effect of salicylate on KCNQ4 of the guinea pig outer hair cell. Journal of neurophysiology 103, 1969-1977.
Yeomans, J.S., and Frankland, P.W. (1995). The acoustic startle reflex: neurons and connections. Brain research Brain research reviews 21, 301-314.
Zigmond, M.J., and Smeyne, R.J. (2014). Exercise: is it a neuroprotective and if so, how does it work? Parkinsonism & related disorders 20 Suppl 1, S123-127.