簡易檢索 / 詳目顯示

研究生: 楊雯惠
Yang, Wen-Hui
論文名稱: 基於3GPP之第五代行動通訊室內場景的遮蔽效應
Blockage Effect in 3GPP New Radio Indoor Scenario
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 50
中文關鍵詞: 遮蔽效應室內聯合傳輸毫米波排程
外文關鍵詞: blockage, indoor, joint transmission, mmWave, scheduling
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在第五代行動通訊所使用的毫米波頻段中,由於毫米波的穿透性比較薄弱,傳送 的訊號很容易被環境所吸收,因此遮蔽效應在第五代行動通訊中是個嚴重的問題。 在室內場景中,由於環境與室外相比較為複雜造成較高的散射,因此在室內中遮蔽 效應會更加的明顯。本碩論從載波頻率、基地台高度、波束寬度與遮蔽物密度等四 個因素來分析不同因素與室內的遮蔽效應的關係。藉由分析上述四種不同的因素使室內的遮蔽效應可以有更深入的探討。目前用來解決遮蔽效應的方法為波束管理,當正在傳送的波束對被遮蔽後,藉由波束管理重新搜尋遮蔽後此基地台與手機中最好的波束對,並進行切換。然而波束管理會受限於能對於正在連結的基地台下的波束進行切換,而這樣的切換並不能有效的補回遮蔽效應造成的能量衰減。這篇碩論使用了聯合傳輸來解決毫米波頻段中的遮蔽效應,聯合傳輸為協調多點收發的其中 一個方法,使多個基地台可以同時傳送訊號給同一個手機。此碩論考量了現行通訊系統的限制,傳送端一個時間單元內只能啟用一個傳送單元,為了克服此限制,此碩論提出了排程方法來解決,使所有的手機無論是否受遮蔽效應的影響皆能被基地台服務。這篇碩論所提出的排程方法是模擬於系統層級模擬器中並且遵循第三代合作夥伴計劃的規範,使室內場景的遮蔽效應可以更貼近真實的世界,並且呈現了排程後聯合傳輸對系統的效益。

    Blockage is a serious issue in 5G New Radio (NR) operating on the Millimeter Wave (mmWave) band. Due to directional transmission and the severe penetration loss of mmWave, transmission is more likely blocked by the surrounding environment. Particularly, mmWave links in the indoor scenario with rich scatters are expected to be more vulnerable to the blockage effect. In this work, we analyse the blockage effect caused by different factors including carrier frequency, Base Station (BS) height, beamwidth and the density of blockers. With the factors described above, the blockage effect in the indoor scenario can be evaluated more thoroughly. To alleviate the blockage effect, beam management has been proposed to allow beam switching but it is restricted to the beams of the serving BS when the transmission beam pair link (BPL) is blocked. Since the initial BPL is the strongest among all the available ones, it may not be always effective to recover the power loss of a blocked BPL by changing the existing beam management scheme. In this work, Joint Transmission (JT) is considered as a potential means to solve the blockage effect in mmWave. As a branch of Coordinated Multi-point (CoMP) technique, JT allows a User Equipment (UE) being served by multiple BSs simultaneously. In practice, the transmission side can only activate one transceiver units (TXRU) with one beam direction per time unit. In order to serve the UE who encounters blockage and the UE without blockage, we design a scheduling method by taking the physical constraint of future BS into account. The proposed scheduling scheme is implemented in a system-level simulator that fully complies with the 3GPP specifications. We evaluate the impact of blockage effect in an realistic indoor environment and also the performance of the proposed scheduling scheme based on JT.

    Chinese Abstract i Abstract ii Acknowledgement iii Table of Contents iv List of Figures vi List of Tables vii List of Symbols viii List of Acronyms xi 1 Introduction 1 1.1 Challenges and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . 2 2 Related Work 3 2.1 Millimeter Wave . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Blockage . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Coordinated Multi-point . . . . . . . . . . . . . . . . . . . . . . . 5 3 System Model 6 3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Ray-based Channel . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Antenna Modelling . . . . . . . . . . . . . . . . . . . . . . . 9 3.3.1 BS antenna . . . . . . . . . . . . . . . . . . . . . . . 10 3.3.2 UE antenna . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Blockage Model. . . . . . . . . . . . . . . . . . . . . . . 14 3.4.1 Self-blockage . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.2 Non-self-blockage . . . . . . . . . . . . . . . . . . . . . . . 15 4 Problem Description and Proposed Method 19 4.1 UE Attachment Procedure . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Blockage Effect . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.1 Static Blockage . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 Beam Management . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Joint Transmission . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . 24 5 Results and Discussions 28 5.1 System Level Simulator-WiSE . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Blockage. . . . . . . . . . . . . . . . . . . . . . . 29 5.3.1 Impact of Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.2 Impact of Blocker Number . . . . . . . . . . . . . . . . . . . . . . . 32 5.3.3 Impact of BS Height . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.4 Impact of Beamwidth . . . . . . . . . . . . . . . . . . . . . . . 35 5.4 Performance of JT . . . . . . . . . . . . . . . . . . . . . . . 37 5.5 Scheduling Performance . . . . . . . . . . . . . . . . . . . . . . . 41 6 Conclusion 46 6.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . 46 6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . 47 References 48

    [1] 3GPP TR 38.901, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on channel model for frequencies from 0.5 to 100 GHz (Release 14),” Version 14.2.0, September 2017.
    [2] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A tutorial on beam management for 3GPP NR at mmwave frequencies,” CoRR, vol. abs/1804.01908, 2018. [Online]. Available: http://arxiv.org/abs/1804.01908
    [3] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp. 1617– 1655, 2016.
    [4] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029– 3056, Sept 2015.
    [5] G. R. Maccartney, T. S. Rappaport, S. Sun, and S. Deng, “Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks,” IEEE Access, vol. 3, pp. 2388–2424, 2015.
    [6] A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, “Hybrid precoding for millimeter wave cellular systems with partial channel knowledge,” in 2013 Information Theory and Applications Workshop (ITA), Feb 2013, pp. 1–5.
    [7] A. A. M. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, February 1987.
    [8] T. A. Thomas, H. C. Nguyen, G. R. MacCartney, and T. S. Rappaport, “3D mmwave channel model proposal,” in Proc. 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Sept 2014, pp. 1–6.
    [9] G. R. MacCartney, S. Deng, S. Sun, and T. S. Rappaport, “Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas,” in Proc. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Sept 2016, pp. 1–6.
    [10] R. Zhang and L. Cai, “A markov model for indoor ultra-wideband channel with people shadowing,” Mobile Networks and Applications, vol. 12, no. 5, pp. 438–449, Dec 2007. [Online]. Available: https://doi.org/10.1007/s11036-008-0043-7
    [11] J. Kunisch and J. Pamp, “Ultra-wideband double vertical knife-edge model for obstruction of a ray by a person,” in Proc. 2008 IEEE International Conference on Ultra-Wideband, vol. 2, Sept 2008, pp. 17–20.
    [12] M. Jacob, S. Priebe, A. Maltsev, A. Lomayev, V. Erceg, and T. Kürner, “A ray tracing based stochastic human blockage model for the IEEE 802.11ad 60 GHz channel model,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), April 2011, pp. 3084–3088.
    [13] M. Jacob, S. Priebe, T. Kurner, M. Peter, M. Wisotzki, R. Felbecker, and W. Keusgen, “Extension and validation of the IEEE 802.11ad 60 GHz human blockage model,” in Proc. 2013 7th European Conference on Antennas and Propagation (EuCAP), April 2013, pp. 2806–2810.
    [14] T. Bai and R. W. Heath, “Coverage analysis for millimeter wave cellular networks with blockage effects,” in Proc. 2013 IEEE Global Conference on Signal and Information Processing, Dec 2013, pp. 727–730.
    [15] 3GPP TR 36.819, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects (Release 11),” v11.1.0, December 2011.
    [16] Y. Zhang, J. Ding, M. W. Kwan, J. Ni, E. K. C. Tsang, Y. N. R. Li, and J. Li, “Measurement and evaluations of coherent joint transmission for 5G networks,” in Proc. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), June 2017, pp. 1–5.
    [17] D. Maamari, N. Devroye, and D. Tuninetti, “Coverage in mmwave cellular networks with base station co-operation,” IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2981–2994, April 2016.
    [18] 3GPP TR 36.873, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on 3D channel model for LTE (Release 12),” Version 12.6.0, September 2017.
    [19] X. Gao, L. Dai, Z. Chen, Z. Wang, and Z. Zhang, “Near-optimal beam selection for beamspace mmwave massive mimo systems,” IEEE Communications Letters, vol. 20, no. 5, pp. 1054–1057, May 2016.
    [20] O. E. Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “The capacity optimality of beam steering in large millimeter wave mimo systems,” in Proc. 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2012, pp. 100–104.
    [21] T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban cellular networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 5070–5083, Sept 2014.
    [22] C. K. Jao, C. Y. Wang, T. Y. Yeh, C. C. Tsai, L. C. Lo, J. H. Chen, W. C. Pao, and W. H. Sheen, “Wise: A system-level simulator for 5G mobile networks,” IEEE Wireless Communications, vol. 25, no. 2, pp. 4–7, April 2018.
    [23] 3GPP RT-170019, “Summary of email discussion [ITU-R AH 01] Calibration for self-evaluation,” 2017.

    無法下載圖示 校內:2021-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE