簡易檢索 / 詳目顯示

研究生: 闕郁虔
Chueh, Yu-Chien
論文名稱: 以模板輔助合成法製備之具奈米異質接面氧化銅鉍光電極應用於光電化學水分解之研究
Template-assisted synthesized CuBi2O4 nano-heterojunction photoelectrodes in photoelectrochemical water splitting
指導教授: 林家裕
Lin, Chia-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 107
中文關鍵詞: 電化學水分解光陰極CuBi2O4CuBi2O4-BiVO4異質接面光陽極
外文關鍵詞: photoelectrochemical water splitting, photocathode, CuBi2O4, CuBi2O4-BiVO4, heterojunction, photoanode
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能已被宣佈為台灣新能源政策中的積極推動的綠色能源之一,為了達到充分利用和儲存間歇性太陽能,開發一種高效穩定的太陽能儲能系統,將具有其重要意義和利益。光電化學(PEC)水分解被認為是具有前景且可有效轉換存儲太陽能的途徑之一。
    在本研究中,我們探討CuBi2O4奈米異質接面光電極(nanoCuBi2O4)用於光電化學水分解的製備與應用。nanoCuBi2O4首先在摻氟的氧化錫導電玻璃基板(FTO)上電沉積BiOI奈米片陣列(nanoBiOI)為基板,然後通過滴鍍VO2+及/與Cu2+的乙醇前驅體液與熱處理後,轉化為nanoCuBi2O4|CuO光陰極或nanoBiVO4|CuBi2O4光陽極。通過調節乙醇前體液的用量和組成,調控nanoCuBi2O4|CuO和nanoBiVO4|CuBi2O4在nanoBiOI的轉化程度。透過採用掃描電子顯微鏡、紫外光-可見光譜、X光繞射儀、線性掃描伏安法、計時電流法和電化學阻抗等分析方法對nanoCuBi2O4進行物性、化性的表徵研究。
    結果顯示,前驅體的用量和組成對nanoCuBi2O4的表面形貌和光電化學性能有很大影響。在最佳合成條件下,nanoCuBi2O4|CuO光陰極呈現出奈米孔洞狀結構,並表現出高起始電位(1.1 V vs RHE)和光電流響應(0.2 V vs RHE -0.35 mA cm-2)的良好光電化學性能,另一方面,nanoBiVO4|CuBi2O4光陽極在1.23 V vs RHE下顯示出1.29 mA-2cm-2的光電流響應,相較於原始的BiVO4,起始電位陰極位移了120 mV同時光電流約提升了兩倍。異質接面用於提升整體光電化學性能的關鍵決定因素已於本研究中探討發現。

    Solar energy has been announced as one of first-tier renewable energies in Taiwan’s New Energy Policy, and to well-utilize and store the intermittent solar energy, developing an efficient and stable solar-to-chemical conversion device is therefore of great importance and interests. Photoelectrochemical (PEC) water splitting has been considered as one of the promising approaches to convert storage solar energy.
    This work reports on the fabrication and applications of CuBi2O4 nano-heterojunction photoelectrodes (nanoCuBi2O4) for photoelectrochemical (PEC) water splitting. (nanoCuBi2O4) were fabricated by firstly electrodepositing of BiOI nanosheet array (nanoBiOI) as a template on the flourine-doped tin oxide coated glass substrate, followed by its conversion into nanoCuBi2O4|CuO photocathode or nanoBiVO4|CuBi2O4 photoanode via drop-casting an ethanolic VO2+ and Cu2+ precursor solution and a subsequent thermal treatment. The degree of conversion of nanoBiOI into nanoCuBi2O4|CuO and nanoBiVO4|CuBi2O4 were controlled by adjusting the dosage and composition of the ethanolic precursor solution. The physiochemical properties of nanoCuBi2O4 were characterized using scanning electron microscope, UV-vis spectroscopy, X-ray diffraction, linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy.
    It was found that the dosage of the precursor had a great influence on the surface morphology and PEC properties of nanoCuBi2O4. Under optimal synthetic conditions, nanoCuBi2O4|CuO photocathode exhibited nanosheet structure and exhibited promising PEC performance, including high onset potential (1.1 V vs. RHE) and photocurrent response (-0.35 mA cm-2 at 0.2 V vs RHE). nanoBiVO4|CuBi2O4 photoanode, on the other hand, showed a photocurrent response of 1.29 mA-2 cm-2 at 1.23 V vs RHE, which is about two times higher than that of pristine BiVO4 with 120mV cathodic shift onset potential. The key factors in determining the overall PEC performance using heterojunction strategy have been uncovered and discussed.

    中文摘要 I Abstract II Acknowledgement IV Table of Content VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Overview photoelectrochemical (PEC) water splitting 2 1.2.1 Introduction of photocatalytic water splitting 2 1.2.2 General approaches for solar water splitting 3 1.3 Photoelectrochemical (PEC) water splitting mechanism 5 1.3.1 Semiconductor-Electrolyte Interface 6 1.3.2 PEC water splitting reactions at anode and cathode 14 1.3.3 Performance of PEC Water splitting 18 1.4 Heterojunctions for PEC water splitting 25 1.5 Reference 28 Chapter 2 Research outline 30 2.1 Overview 30 2.2 Scope of thesis: Template-assisted synthesized CuBi2O4 nano-heterojunction photoelectrodes 31 2.3 Thesis organization 33 2.4 Review on previous researches 34 2.5 Reference 39 Chapter 3 Experimental 49 3.1Experimental Information 49 3.2 Instrumentation 51 3.3 Experimental Procedure 52 3.3.1 Preparation of cleaned fluorine-doped tin oxide glass substrates 52 3.3.2 Preparation of nanocomposite of CuBi2O4-CuO nano-heterojunction photocathode 54 3.3.3 Preparation of BiVO4-CuBi2O4 nano-heterojunction photoanode 55 3.4 Physical Characterization 56 3.5 Electrochemical and PEC Characterization 57 Chapter 4 Results and discussion 59 4.1 CuBi2O4-CuO nano-heterojunction photocathode 59 4.1.1 Physical characterization 59 4.1.2 Electrochemical and PEC characterization 64 4.2 BiVO4-CuBi2O4 nano-heterojunction photoanode 69 4.2.1 Physical characterization 69 4.2.2 Electrochemical and PEC characterization 72 4.3 Analytical investigation of photocurrent origin: CuBi2O4-CuO nano-heterojunction photocathode 77 4.3.1 UV-Vis-NIR spectroscopy 77 4.3.2 Electrochemical impedance spectroscopy (EIS) 80 4.3.3 Mott- schottky Measurement 81 4.3.4 Energy band diagram 83 4.4 Analytical investigation of photocurrent origin: BiVO4-CuBi2O4 nano-heterojunction photoanode 86 4.4.1 UV-Vis-NIR spectroscopy 86 4.4.2 Electrochemical impedance spectroscopy (EIS) 89 4.4.3 Mott- schottky Measurement 91 4.4.4 Energy band diagram 92 4.5 Attempt to improve PEC performance of CuBi2O4-CuO nano-heterojunction photocathode 94 4.5.1 Surface modification of TiO2 and Pt nanoparticles 94 4.6 Reference 98 Chapter 5 Conclusions remarks 100 5.1 Conclusion of Template-assisted synthesized CuBi2O4 nano-heterojunction photoelectrodes 100 5.2 Suggestion 102 5.2.1 Optimization of TiO2 protection layer and Pt layer 102 5.2.2 Integrating Oxygen evolution reaction (OER) catalyst 102 5.2.3 Dual configuration system 102 5.3 Reference 104 Appendix 105 nanoBiOI nanosheet 105 Reference 107

    [1] Bureau of Energy, Ministry of Economic Affairs, “Energy Statistics Handbook 2017,” Taipei, Taiwan, 2017
    [2] Globaler Klima-Risiko-Index 2018 – Zusammenfassung, 2018
    [3] H.-H. Hsu, C. Chou, Y.-C. Wu, M.-M. Lu, C.-T. Chen, Y.-M. Chen, “Climate Change in Taiwan: Scientific Report 2011 (Summary),” National Science Council, Taipei, Taiwan, 2011,67
    [4] D. M. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. E. Osterlohf, S. Ardo, “Particle suspension reactors and materials for solar-driven water splitting,” Energy Environ. Sci., 2015,8, 2825-2850.
    [5] G. Peharz, F. Dimroth, U. Wittstadt, “Solar hydrogen production by water splitting with a conversion efficiency of 18%,” Int. J. of Hydrog. Energy, 2007, 32, 3248-3252.
    [6] J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. D. Ng, T. Bilir, J. S. Harris, T. F. Jaramillo, “Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%,” Nature Comm., 2016,7,13237
    [7] M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci., 2016, 9, 2354-2371
    [8] R. Abe,“Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation ,” J. Photochem. Photobiol., C,2010, 11, 179-209
    [9] W. W. Gärtner, “Depletion-Layer Photoeffects in Semiconductors , ”Phys. Rev., 1959,116, 84–87
    [10] Z. Wang, L. Wang, “Progress in designing effective photoelectrodes for solar water splitting,” Chin. J. Catal, 2018, 39, 369-378
    [11] A. Tetsuya, D. Kazunari, N. Shuichi, O. Takaharu, T. Kenzi, “The role of sulfite anion as a hole scavenger in the photocatalytic hydrogen formation from water on CdS semiconductor under illumination of visible light,” Chem.Lett., 1989, 12,1983
    [12] H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S. C. Warren, “Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger,” New J. Chem., 2018, 42, 9501-9509
    [13] E. M. Rodríguez, E. González, “GaAs/AlGaAs nanoheterostructures: Simulation and application on high mobility transistors,” Ing. Inv., 2011, 31, 144-153.
    [14] T. T. Guaraldo, J. F. de Brito, D. Wood and M. V. B. Zanoni, “A New Si/TiO2/Pt p-n Junction Semiconductor to Demonstrate Photoelectrochemical CO2 Conversion, single wall carbon nanotubes – ZnO heterojunction as LED material,” Electrochim. Acta, 2015, 185, 117–124
    [15] P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. L. Wang, N. Wang and D. P. Yu, “Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires,” Nano Lett., 2009, 9, 2513-2518.
    [16] M. L. Tsai, M. Y. Li, J. R. D. Retamal, K. T. Lam, Y. C. Lin, K. Suenaga, L. J. Chen, G. Liang, L. J. Li and H. He, “Single Atomically Sharp Lateral Monolayer p-n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency,” Jr, Adv. Mater., 2017, 29, 1701168.
    [17] M. Rocci, F. Rossella, U. P. Gomes, V. Zannier, F. Rossi, D. Ercolani, L. Sorba, F. Beltram and S. Roddaro, “Tunable Esaki Effect in Catalyst-Free InAs/GaSb Core−Shell Nanowires,” Nano Lett., 2016, 16, 7950−7955.
    [18] Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, H. N. Dinh, "Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols," J. Mater. Res. Technol., 2010, 25, 3-16.
    [19] T. Jacobsson,"Photoelectrochemical water splitting: an idea heading towards obsolescence?," Energy Environ. Sci., 2018, 11, 1977-1979.
    [20] A. Fujishima, "TiO2 photoelectrochemistry and photocatalysis," Nature, 1972, 238, 37.
    [21] K. C. Chitrada, R. Gakhar, D. Chidambaram, E. Aston, K. S. Rajaa, “Enhanced Performance of β-Bi2O3 by In-Situ Photo-Conversion to Bi2O3-BiO2-x Composite Photoanode for Solar Water Splitting,” J. Electrochem. Soc., 2016, 163, H546-H558.
    [22] Y. Lv, W. Yao, R. Zong, Y. Zhu, “Fabrication of Wide–Range–Visible Photocatalyst Bi2WO6−x nanoplates via Surface Oxygen Vacancies,” Sci. Rep., 2016, 19347.
    [23] H. Cheng, B. Huang, Y. Dai, “Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications,” Nanoscale, 2014, 6, 2009-2026.
    [24] T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, “Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation,” J. Phys. Chem. C, 2007, 111, 7574-7577.
    [25] T. W. Kim, K. S. Choi, “Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting,” Science, 2014, 343, 990-994.
    [26] T. Arai, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, “High-Throughput Screening Using Porous Photoelectrode for the Development of Visible-Light-Responsive Semiconductors,” J. Comb. Chem., 2007, 9, 574-581.
    [27] A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, S. H. Wei, “Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals,” Chem. Mater., 2009, 21, 547-551
    [28] J. Su, L, Guo, N. Bao, C. A. Grimes, “Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting,” Nano Lett., 2011, 11, 1928-1933,
    [29] R. He, D. Xu, B. Cheng, J. Yu, W. Ho, “Review on nanoscale Bi-based photocatalysts”, Nanoscale Horizons, 2018,112,547-551.
    [30] L. Cai, H. Kisch, “Visible Light Induced Photoelectrochemical Properties of n-BiVO4 and n-BiVO4/p-Co3O4,” J. Phys. Chem. C, 2008, 112, 548-554.
    [31] S. K. Pilli, T. G. Deutsch, T. E. Furtak, L. D. Brown, J. A. Turner, A. M. Herring, “BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation,” Phys. Chem. Chem. Phys., 2013, 15, 3273-3278.
    [32] C.-H. Wu, E. Onno, C.-Y. Lin, “CuO nanoparticles decorated nano-dendrite-structured CuBi2O4 for highly sensitive and selective electrochemical detection of glucose,” Electrochim. Acta, 2017, 229, 129-140.
    [33] Y. Nakabayashi, M. Nishikawa, Y. Nosaka, “Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production,” Electrochim. Acta, 2014, 125, 191-198.
    [34] H. S. Park, C.Y. Leea, E, Reisner, “Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation,” Phys. Chem. Chem. Phys., 2014, 16, 22462-22465.
    [35] S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting,” Chem. Mater.,2016, 28, 4231-4242.
    [36] L. Zhu, P. Basnet, S. R. Larson, L. P. Jones, J. Y. Howe, R. A. Tripp, and Y. Zhao, “Visible Light-Induced Photoeletrochemical and Antimicrobial Properties of Hierarchical CuBi2O4 by FacileHydrothermal Synthesis,” ChemistrySelect, 2016, 1, 1518-1524.
    [37] D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang and Y. Lei, “p-type CuBi2O4: an Easily Accessible Photocathodic Material for High-efficient Water Splitting,” J. Mater. Chem. A., 2016, 4, 8995-9001.
    [38] F. Wang, W. Septina, A. Chemseddine, F. F. Abdi, D. Friedrich, P. Bogdanoff, R. van de Krol, S. D.Tilley, and S. P. Berglund, “Gradient self-doped CuBi2O4 with highly improved charge separation efficiency” , J. Am. Chem. Soc., 2017, 139, 15094-15103.
    [39] Y.-H. Choi, K. D. Yang, D.-H. Kim, K. T. Nam, S.-H. Hong, “p-Type CuBi2O4 thin films prepared by flux-mediated one-pot solution process with improved structural and photoelectrochemical characteristics,” Materials Letters, 2017, 188, 192-196.
    [40] M. K. Hossain, G. F. Samu, K. Gandha, S. Santhanagopalan, J. Ping Liu, C. Janáky, and K. Rajeshwar, “Solution Combustion Synthesis, Characterization, and Photocatalytic Activity of CuBi2O4 and Its Nanocomposites with CuO and α‑Bi2O3,” J. Phys. Chem. C, 2017, 121, 8252-826.
    [41] F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A., 2017, 5, 15838-12847.
    [42] J. Li, M. Griep, Y. Choib, D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Comm., 2018, 54, 3331-3334.
    [43] C. Dua, J. Yanga, J. Yang, Y. Zhao, R. Chen, B. Shan, “An iron oxide -copper bismuth oxide photoelectrochemical cell for spontaneous water splitting,” Int. J. Hydrog. Energy, 2018, 43, 22807-22814.
    [44] I. Rodríguez-Gutiérrez, R. García-Rodríguez, M. Rodríguez-Pérez, A. Vega-Poot, G. R. Gattorno, B. A. Parkinson, G. Oskam, “Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting,” J. Phys. Chem. C, 2018, 122, 27169-27179.
    [45] J. H. Kim, A. Adishev, J. Kim, Y. S. Kim, S. Cho, J. S. Lee, “All-Bismuth-Based Oxide Tandem Cell for Solar Overall Water Splitting,” ACS Appl. Energy Mater. 2018, 1, 6694-6699.
    [46] X. Zhu, Z. Guan, P. Wang, Q. Zhang, Y. Dai, B. Huang, “Amorphous TiO2-modified CuBi2O4 Photocathode with enhanced photoelectrochemical hydrogen production activity,” Chin. J. Catal., 2018, 39, 1704-1710.
    [47] J. Yang, C.Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrog. Energy, 2018, 43, 9549-9557.
    [48] N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, J. Jin, “N,Cu-Codoped Carbon Nanosheet/Au/CuBi2O4 Photocathodes for Efficient Photoelectrochemical Water Splitting,” ACS Sustainable Chem. Eng., 2018, 6, 7257-7264.
    [49] N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrog. Energy, 2018, 43, 2064-2072.
    [50] A. Song, P. Plate, A. Chemseddine, F. Wang, F. F. Abdi, M. Wollgarten, R. van de Krolab, S. P. Berglund, “Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi2O4 thin film photocathodes, ” J.Mater.Chem.A, 2019, 7, 9183-9194.
    [51] Y.-H. Lai, K.-C. Lin, C.-Y. Yena, B.-J. Jiang, “A tandem photoelectrochemical water splitting cell consisting of CuBi2O4 and BiVO4 synthesized from a single Bi4O5I2 nanosheet template,” Faraday Discussions, 2019, 215, 297-312.
    [52] A. K. Shah, T. K. Sahu, A. Banik, D. Gogoi, N. R. Peela, M. Qureshi, “Reduced graphene oxide modified CuBi2O4 as an efficient and noble metal free photocathode for superior photoelectrochemical hydrogen production,” Sustainable Energy Fuels, 2019,3, 1554-1561.
    [53] C. Liu, X. Li, J. Su, L. Guo, “Enhanced charge separation in copper incorporated BiVO4 with gradient doping concentration profile for photoelectrochemical water splitting,” Int. J. Hydrog. Energy, 2016, 41, 12842-12851.
    [54] L. Meng, W. Tian, F. Wu, F. Cao, L. Li, “TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting,” J. Mater. Sci., 2019, 35, 1740-1746.
    [55] L. Zhang, Q. Luo, X. Chen, M. S. Tse, O. K. Tan, K. H. H. Li, Y. Y. Tay, C. K. Lim, X. Guoa, K. C. Leong, “Mechanochemically synthesized CuO/m-BiVO4 composite with enhanced photoelectrochemical and photocatalytic properties,” RSC Advances, 2016, 6, 65038-65046.
    [56] S. Bai, J. Liu, M. Cui, R. Luo, Jing He, A. Chena, “Two-step electrodeposition to fabricate the p–n heterojunction of a Cu2O/BiVO4 photoanode for the enhancement of photoelectrochemical water splitting,” Dalton Transactions, 2018, 47,6763-6771
    [57] K.-H. Ye, X. Yu, Z. Qiu, Y. Zhu, X. Luc, Y. Zhang, “Facile synthesis of bismuth oxide/bismuth vanadate heterostructures for efficient photoelectrochemical cells,” RSC Adv., 2015, 5, 34152-34156.
    [58] K,-H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, “BiOI-BiVO4 photoanodes with significantly improved solar water splitting capability: p-n junction to expand solar adsorption range and facilitate charge carrier dynamics,” ,Nano Energy, 2015, 18, 222-231.
    [59] Dos Santos W.S., Rodriguez M., Afonso A.S., Mesquita J.P., Nascimento L.L., Patrocínio A.O., Silva A.C., Oliveira L.C., Fabris J.D., Pereira M.C., “A hole inversion layer at the BiVO4 /Bi4V2O11 interface produces a high tunable photovoltage for water splitting,” Sci. Rep., 2016, 31406.
    [60] C. Liu, J. Zhou, J. Su, L. Guo, “Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance,” Appl. Catal. B, 2019, 241, 506-513.
    [61] Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, T. Kitamori, “Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency,” Sci. Rep., 2015, 11141.
    [62] X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, “Enhanced Surface Reaction Kinetics and Charge Separation of p–n Heterojunction Co3O4/BiVO4 Photoanodes.” J. Am. Chem. Soc., 2015, 137, 26, 8356-8359.
    [63] I. Grigioni, K. G. Stamplecoskie, E. Selli, P. V. Kamat, “Dynamics of Photogenerated Charge Carriers in WO3/BiVO4 Heterojunction Photoanodes,” J. Phys. Chem. C., 2015, 119, 36, 20792-20800.
    [64] H. Jung, S. Y. Chae, C. Shin, B. K. Min, O.-S. Joo, Y. J. Hwang, “Effect of the Si/TiO2/BiVO4 Heterojunction on the Onset Potential of Photocurrents for Solar Water Oxidation,” ACS Appl. Mater. Interfaces, 2015, 7, 5788-5796.
    [65] M. G. Mali, H. Yoon, M.-W. Kim, M. T. Swihart, S. S. Al-Deyab, S. S. Yoon, “Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting,” Appl. Phys. Lett., 2015, 106, 151603.
    [66] B.-Y Cheng, J.-S. Yang, H.-W. Cho, J.-J. Wu, “Fabrication of an Efficient BiVO4–TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation,” ACS Appl. Mater. Interfaces, 2016, 8, 20032-20039.
    [67] L. Yan, W. Zhaoa, Z. Liu, “1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting,” Dalton Trans., 2016, 45, 11346-11352.
    [68] A. P. Singh, N. Kodan, B. R. Mehta, A. Held, L. Mayrhofer, M. Moseler, “Band Edge Engineering in BiVO4/TiO2 Heterostructure: Enhanced Photoelectrochemical Performance through Improved Charge Transfer,” ACS Catal., 2016, 6, 5311-5318.
    [69] M. G. Lee, D. H. Kim, W. Sohn, C. W, Moon, H. Park, S. Lee, H. W. Jang, “Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation,” Nano Energy, 2016, 28, 250-260.
    [70] J.-S. Yang, J.-J. Wu, “Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting,” Nano Energy, 2017, 32, 232-240.
    [71] L. Xia, J. Bai, J. Li, Q. Zeng, L. Li, B. Zhou, “High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application,” Appl. Catal. B, 2017, 204, 127-133.
    [72] S. Y. Chae, C. S. Lee, H. Jung, O.-S. Joo, B. K, Min, J. H. Kim, Y. J. Hwang “Insight into Charge Separation in WO3/BiVO4 Heterojunction for Solar Water Splitting,” ACS Appl. Mater. Interfaces, 2017, 9, 19780-19790.
    [73] J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho, H. S. Jung “BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell,” ACS Appl. Mater. Interfaces, 2017, 9, 1479-1487.
    [74] H. Zhang, C. Cheng, “Three-Dimensional FTO/TiO2/BiVO4 Composite Inverse Opals Photoanode with Excellent Photoelectrochemical Performance,” ACS Energy Lett., 2017, 2, 813-821.
    [75] S. S. Kalanur, I.-H. Yoo, J. Park, H. Seo, “Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency,” J. Mater. Chem. A, 2017, 5, 1455-1461.
    [76] C, Liu, Y. Yang, J. Li, S. Chen, W. Li, X. Tange, “An in situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity,” Chem. Eng. J., 2017, 326, 603-611.
    [77] Q. Wanga, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, “FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting,” Chem. Eng. J., 2018, 337, 506-514.
    [78] M.-W. Kim, K. Kim, T. Y. Ohm, H. Yoon, B. Joshi, E. Samuel, M. T. Swihart, S. K. Choi, H. Park, S. S. Yoon, “Electrosprayed BiVO4 nanopillars coated with atomic-layer-deposited ZnO/TiO2 as highly efficient photoanodes for solar water splitting,” Chem. Eng. J., 2018, 333, 721-729.
    [79] B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. I. Kim, Y. Son, J. H. Park, “Solution-processed yolk–shell-shaped WO3/BiVO4 heterojunction photoelectrodes for efficient solar water splitting,” J. Mater. Chem. A, 2018, 6, 2585-2592.
    [80] Q. G. Pan, C. Zhang, Y. Xiong, Q. Mi, D. Li, L. Zou, Q. Huang, Z. Zou, H. Yang, “Boosting Charge Separation and Transfer by Plasmon-Enhanced MoS2/BiVO4 p–n Heterojunction Composite for Efficient Photoelectrochemical Water Splitting,” ACS Sustainable Chem. Eng., 2018, 6, 6378-6387.
    [81] S. Xu, D. Fu, K. Song, L. Wang, Z. Yang, W. Yang, H. Hou, “One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting,” Chem. Eng. J., 2018, 349, 368-375.
    [82] S. Bai, H. Chu, X. Xiang, R. Luo, J. He, A. Chen, “Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting,” Chem. Eng. J., 2018, 350,148-156.
    [83] S.-Y. Chen, J.-S. Yang, J.-J. Wu, “Three-Dimensional Undoped Crystalline SnO2 Nanodendrite Arrays Enable Efficient Charge Separation in BiVO4/SnO2 Heterojunction Photoanodes for Photoelectrochemical Water Splitting,” ACS Appl. Energy Mater., 2018, 1, 2143-2149.
    [84] X. Zhang, X. Wang, D. Wang, J. Ye, “Conformal BiVO4-Layer/WO3-Nanoplate-Array Heterojunction Photoanode Modified with Cobalt Phosphate Cocatalyst for Significantly Enhanced Photoelectrochemical Performances,” ACS Appl. Mater. Interfaces 2019, 11, 5623-5631.
    [85] Zhou W., Jiang T., Zhao Y., Xu C., Pei C., Xue H., “Ultrathin TiO2/BiVO4 nanosheet heterojunction arrays modified with NiFe-LDH nanoparticles for enhanced photoelectrochemical oxidation of water,” J Colloid Interface Sci., 2019,549,42-19.
    [86] Q. Huang, Y. Qiu, H. Luo, Y. Yuan, X. Li, Z. Wang, W. Mai, “p-Type NiO modified BiVO4 photoanodes with enhanced charge separation and solar water oxidation kinetics,” Mater. Lett., 2019,249,128-131.
    [87] Z. Ma, K. Song, W. Lin, F.-H. Gao, B. Tang, H. Hou, W. Yang, “WO3/BiVO4 Type-II Heterojunction Arrays Decorated with Oxygen-deficient ZnO Passivation Layer: a Highly Efficient and Stable Photoanode,” ACS Appl. Mater. Interfaces, 2019,11,889-897
    [88] C. S. Yaw, Q. Ruan, J. Tang, A. K. Soh, M. N. Chong, “A Type II n-n staggered orthorhombic V2O5/monoclinic clinobisvanite BiVO4 heterojunction photoanode for photoelectrochemical water oxidation: Fabrication, characterisation and experimental validation,” Chem. Eng. J., 2019, 364, 177-185.
    [89] Y. Liu, B. R. Wygant, K. Kawashima, O. Mabayoje, T. E. Hong, S.-G. Lee, J. Lin, J.-H. Kim, K. Yubuta, W. Li, J. Li, C. B. Mullins, “Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode,” Applied Catalysis B: Environmental, 2019, 245, 227-239.
    [90] S. Zhou, P. Yue, J. Huang, L. Wang, H. Shea, Q. Wang, “High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method,” Chem. Eng. J., 2019, 371, 885-892.
    [91] W. Zhou, T. Jiang, Y. Zhao, C. Xu, C. Pei, H. Xue, “Ultrathin Ti/TiO2/BiVO4 nanosheet heterojunction arrays for photoelectrochemical water oxidation” , J. Alloys Compd., 2019, 777, 11153-1158.
    [92] J. A. Steele, R. A. Lewis, “In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands,” Opt. Mater. Express, 2014, 4, 2133–2142.
    [93] Z.N. Zahran, E.A. Mohamed, A.A. Haleem, Y. Naruta, “Efficient Solar-Assisted O2 Reduction Using a Cofacial Iron Porphyrin Dimer Catalyst Integrated into a p-CuBi2 O4 Photocathode,” Chem., 2018, 24, 10606-10611.
    [94] K. C. Chitrada, R. Gakhar, D. Chidambaram, E. Aston, K. S. Raja, “Enhanced Performance of β-Bi2O3 by In-Situ Photo-Conversion to Bi2O3-BiO2-x Composite Photoanode for Solar Water Splitting,” J. Electrochem. Soc., 2016, 163, H546-H558.
    [95] F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A, 2017, 5, 12838-12847.
    [96] S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. van de Krol, “Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting,” Chem. Mater., 2016, 28, 4231−4242.
    [97] K. J. Mcdonald, K.-S. Choi, “A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation,” Energy Environ. Sci., 2012, 5, 8553-8557.
    [98] H. Cheng, B. Huang, J. Lu, Z. Wang, B. Xu, X. Qin, X. Zhang, Y. Dai, “Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs,” Phys. Chem. Chem. Phys., 2010,12, 15468-15475
    [99] G. Amin, “ZnO and CuO nanostructures: low temperature growth, characterization, their optoelectronic and sensing applications,” Norrköping (Sweden), LiU-Tryck, 2012.
    [100] M. A. Butler and D. S. Ginley, “Prediction of Flatband Potentials at Semiconductor-Eletrolyte Interfaces from Atomic Electronegativities,” J. Electrochem. Soc., 1978, 125, 228–232.
    [101] T. W. Kim, K.-S. Choi, “Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting,” Science, 2014, 343, 990-994.
    [102] P. F. Newhouse, D. A. Boyd, A. Shinde, D. Guevarra, L. Zhou, E. Soedarmadji, G. Li, J. B. Neatoncd, J. M. Gregoire, “Solar fuel photoanodes prepared by inkjet printing of copper vanadates,” J. Mater. Chem. A, 2016, 4, 7483-7494
    [103] A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley, M. Grätze, “Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability,” Energy Environ. Sci., 2012, 5, 8673-8681.
    [104] X. Zhu, Z. Guan, P. Wang, Q. Zhang, Y. Dai, B. Huang, “Amorphous TiO2-modified CuBi2O4 Photocathode with enhanced photoelectrochemical hydrogen production activity,” Chinese J. Catal., 2018, 39,1704-1710.
    [105] D. Zywitzki, H. Jing, H. Tüysüz, C. K. Chan, “High surface area, amorphous titania with reactive Ti3+ through a photo-assisted synthesis method for photocatalytic H2 generation,” J. Mater. Chem. A, 2017, 5, 10957–10967.
    [106] X. Zhu, Z. Guan, P. Wang, Q. Zhang, Y. Dai, B. Huang, “Amorphous TiO2-modified CuBi2O4 Photocathode with enhanced photoelectrochemical hydrogen production activity,” Chin. J. Catal., 2018, 39, 1704-1710.
    [107] J. Yang, C.Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrog. Energy, 2018, 43, 9549-9557.
    [108] C. Liu, X. Li, J. Su, L. Guo, “Enhanced charge separation in copper incorporated BiVO4 with gradient doping concentration profile for photoelectrochemical water splitting,” Int. J. Hydrog. Energy, 2016, 41, 12842-12851.
    [109] J. H. Kim, A. Adishev, J. Kim, Y. S. Kim, S. Cho, J. S. Lee, “All-Bismuth-Based Oxide Tandem Cell for Solar Overall Water Splitting,” ACS Appl. Energy Mater. 2018, 1, 6694-6699.
    [110] J. A. Seabold , K. Zhu and N. R. Neale, “Efficient solar photoelectrolysis by nanoporous Mo: BiVO 4 through controlled electron transport,” Phys. Chem. Chem. Phys., 2014, 16, 1121-1131.
    [111] J. Su, L. Guo, N. Bao and C. a. Grimes, “Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting,” Nano Lett., 2011, 11, 1928-193.
    [112] Y.-H. Lai, K.-C. Lin, C.-Y. Yena, B.-J. Jiang, “A tandem photoelectrochemical water splitting cell consisting of CuBi2O4 and BiVO4 synthesized from a single Bi4O5I2 nanosheet template,” Faraday Discussions, 2019, 215, 297-312.
    [113] J. Lu, J. Wu, W. Xu, H. Cheng, X. Qi, Q. Li, Y. Zhang, Yu. Guan, Y. Ling, Z. Zhang, “Room temperature synthesis of tetragonal BiOI photocatalyst with surface heterojunction between (0 0 1) facets and (1 1 0) facets,” Mater. Lett., 2018, 219, 260-264.
    [114] A. Dash, S. Sarkar, V. N. K. B. Adusumalli, V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir, 2014, 30, 1401-1409.

    無法下載圖示 校內:2022-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE