| 研究生: |
吳知易 Wu, Tzi-yi |
|---|---|
| 論文名稱: |
共軛電激發光高分子的合成與光電性質探討 Synthesis and Characterization of Luminescent Conjugated Polymers |
| 指導教授: |
陳雲
Yun, Chen, |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 319 |
| 中文關鍵詞: | 螢光感應現象 、電激發光 、共軛高分子 |
| 外文關鍵詞: | fluorescent chemosensor, acid sensory, luminescence, cyclic voltammetry, phenothiazine, iminodibenzyl |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要合成新的電激發光共聚合物材料,這些材料包含:(1)新的電洞傳遞發色團(iminodibenzyl和phenothiazine);(2)含有電子傳遞功能的2,3-divinylquinoxaline單元;(3)合成具有電子和電洞傳遞單元的共聚合物,以改善其電激發光效率,並將光誘導電荷轉移原理引進具有予體-受體結構的共軛共聚合物中,這對化學螢光感應器的應用是很重要的發現;(4)在PPV的主鏈上導入具有立體障礙的苯基來防止凝集進而減少激子的萃熄效應;(5)將pyridine及phenothiazine導入共聚合物主鏈中,並研究pyridine的質子化、離子感應性質及phenothiazine的化學氧化性質。茲將其鑑定結果與討論分述如下:
(1) 含電洞傳遞基iminodibenzyl和phenothiazine發色團的共聚物:
用Wittig-Horner和Knoevenagel 反應合成具有N-hexyl-3,8-iminodibenzyl和N-hexyl-3,7-phenothiazyl發色團的共聚物。N-hexyliminodibenzyl的氧化電位(1.33 V)比N-hexylcarbazole (1.73 V)還低,意指iminodibenzyl發色團能有效提升HOMO能階。光激發光(PL)及電激發光(EL)光譜顯示在乙烯鏈段導入氰基取代造成明顯紅移。由於iminodibenzyl和carbazole 發色團的結構部分相似,我們製備並鑑定一含有carbazole的共聚合物作比較。由電化學實驗結果顯示iminodibenzyl發色團能有效提升HOMO 能階。此外,我們也合成含phenothiazine 基團的arylenevinylene共聚物。Phenothiazine 發色團除了含氮原子外,還包含一額外的硫原子。我們合成並分析phenothiazine基團對光學、電化學和電激發光性質的影響。和其他含氮的電洞傳遞性材料作比較,如carbazole、alkyldiphenylamine、triphenylamine和iminodibenzyl chromophores,光激發光光譜顯示具有phenothiazine 的共聚物有較長的波長及最狹窄的譜帶間隙。
(2) 含電子傳遞基quinoxaline單元的共聚物:
為了增加電荷注入的能力,我們將具有電子親和性的2,3-divinylquinoxaline基團和一系列的電洞傳遞性發光團 (iminodibenzyl, phenothiazine, dihexyloxybenzene and didodecyloxydistyrylbenzene) 交替地導入共軛共聚合物的主鏈中。 所合成的共聚合物是非結晶性的材料,而且在300oC下是熱穩定的。這些共聚合物在甲酸中造成明顯的正型溶劑化顯色效應。由於這些共聚合物具有予體(donor)和受體(acceptor)等共軛單元(push-pull 結構),所以顯示較狹窄的譜帶間隙(< 2.3 eV)。
(3) 具有電洞傳遞基(iminodibenzyl和distyrylbenzene)及電子傳遞基(oxadiazole)的共聚物:
為了平衡電子與電洞注入的效率及增加電荷注入和傳遞的能力。我們設計並合成一系列同時具有電洞傳遞基團及具有電子親和性基團(oxadiazole)的二極共聚合物。這些共聚合物顯示很好的熱穩定性,其熱裂解溫度約在352-413 oC,經由在不同濃度下的溶液態和薄膜態的吸收和PL光譜可知P15 ~ P20在高濃度的溶液態會有excimer的形成。在酸性環境下,有些共聚合物會有獨特的吸收和螢光現象,這是由於在交替的予體-受體結構中,由於酸的存在會產生光誘導的電荷轉移(photoinduced charge transfer)現象。這種光誘導的電荷轉移現象導致含iminodibenzyl基團的共聚合物(P12~P15)產生藍移現象,而且使含fluorene的共聚合物(P20)產生紅移現象,所以iminodibenzyl是一個強的電子贈與單元。電化學測量顯示含芴環的P20其起始氧化電位(Eonset) 比含二苯乙烯苯基團的P17還高,這是由於導入芴環於共聚合物骨幹中會增加電子親核性。P14、P17、P18 和P20 其由電化學所測得的譜帶間隙和光學法所測得的譜帶間隙卻有明顯的差異,這可歸因於有電子贈予單元(1,4-dihexyloxybenzene unit)在兩個1,3,4-oxadiazole單元之間。雙層ITO/PEDOT/P17/Ca/Al元件放射明亮的黃光,其最大的明亮度和流明效率分別是3190 cd/m2和0.66 cd/A。
(4) 具有terphenyl基團的PPV衍生物:
我們合成一含有terphenyl基團的可溶性PPV衍生物 (P21)。這共聚合物具有很好的溶解度、高熱穩定性,在薄膜態時顯示高光激發光效率(0.36)。其單層元件(ITO/P21/鋁元件)的起始電壓和亮度分別是5伏特和104 cd/m2。由電激發光測量顯示P21可放射出明亮的黃光。這元件的亮度是ITO/MEH-PPV/鋁元件的3倍。
(5) 含有pyridine和phenothiazine的共聚物:
我們合成一共聚合物poly(N-hexyl-3,7-phenothiazylene-1,2- ethenylene-2,6-pyridylene-1,2-ethenylene) (P24)並研究其質子化、金屬螯合和化學氧化的吸收和放射光譜。電化學測量顯示P24具有較狹窄的譜帶間隙由於這些共聚合物具有予體(donor)和受體(acceptor)結構。P24的吸收和放射光譜可經由質子化、金屬螯合和化學氧化而改變。P24在三氟醋酸和氯仿中質子化會使得吸收和螢光光譜紅移。P24和鐵離子(Fe3+)螯合後會使得吸收光譜改變和螢光萃熄,意指2,6-pyridylene 基團上的氮原子和鐵離子互相作用。具有phenothiazylene的共聚物和NOBF4作用後會產生明顯的螢光萃熄和稍微紅移螢光光譜。
The purpose of this study is to synthesize new polymeric electroluminescent (EL) materials and investigate their optical, electrochemical and EL properties. We design EL copolymers containing novel hole transport chromophores (iminodibenzyl and phenothiazine) or electron-affinitive 2,3-divinylquinoxaline, oxadiazole and pyridine units. The final reports are divided into five parts as follows:
(1) Luminescent copolymers containing iminodibenzyl and phenothiazine Chromophores.
Novel copolymers carrying N-hexyl-3,8-iminodibenzyl and N-hexyl-3,7-phenothiazyl chromophores have been synthesized by Wittig-Horner or Knoevenagel reaction. The oxidation potential of model N-hexyliminodibenzyl (1.33 V) is much smaller than that of conventional N-hexylcarbazole (1.73 V), indicating iminodibenzyl is an effective chromophore in raising HOMO level. Photoluminescence measurement reveal that cyano substitution at vinylene moiety brings about significant bathochromic shift and leads to electroluminescence color change from green to orange. Iminodibenzyl chromophore is contrasted with previous polymers using carbazole. I prepared and characterized of one carbazole polymer for reference. From electrochemical study, iminodibenzyl is an effective chromophore in raising HOMO level. New arylenevinylene polymers containing phenothiazine group have been synthesized. Phenothiazine chromophore contains extra electron-donating sulfur in addition to nitrogen. I synthesized and analyzed the effects of phenothiazine moieties on optical, electrochemical and electroluminescent characteristics. Comparing with other hole transport materials containing only nitrogen, such as carbazole, alkyldiphenylamine, triphenylamine, and iminodibenzyl chromophores, copolymers with phenothiazine moieties exhibit the longest PL wavelength and narrowest band gap.
(2) Luminescent copolymers containing quinoxaline units.
In order to enhance charges affinity, electron affinitive 2,3-divinylquinoxaline and a series of hole-transporting chromophores (iminodibenzyl, phenothiazine, dihexyloxybenzene and didodecyloxydistyrylbenzene) were incorporated alternately into polymeric main chain. The resulting copolymers are basically amorphous materials and thermally stable below 300oC. They show significant positive solvatochromism in formic acid. Electrochemical study reveals they exhibit lower band gaps (< 2.3 eV) due to alternating donor and acceptor conjugated units (push-pull structure).
(3) Electroluminescent copolymers containing distyrylbenzene and oxadiazole units.
In order to balance the rates of injection of electrons and holes, and to enhance the charge injecting/transporting ability. A new series of bipolar polymers that possesses both a hole injecting/transporting segment and an electron-affinitive segment (oxadiazole) have been designed and synthesized. Excimer formation in P15~P20 was confirmed by their absorption and PL spectral peak transition in solution at different concentration and in thin films. Unusual absorption and fluorescence were observed in acid media which have been related to photoinduced charge transfer in alternating donor-acceptor architecture. The photoinduced charge transfer led to blueshift in iminodibenzyl-containing copolymers (P12~P14) and redshift in fluorene-containing copolymers (P20), reflecting the fact that iminodibenzyl is a stronger electron-donating unit. The optical band gaps of the dioxadiazole-containing copolymers show great discrepancy with the electrochemical band gap energy due to donor-acceptor feature of the dioxadiazole unit. The brightness and luminance efficiency of ITO/ PEDOT/polymer (distyrylbenzene and dioxadiazole units)/Ca/Al configuration emits bright yellow emission, the maximum brightness and luminance efficiency are 3190 cd/m2 and 0.66 cd/A, respectively.
(4) Electroluminescent copolymers containing sterical hindered phenyl substituent at the 2,5-positions of the 1,4-phenylene moiety in the PPV backbone.
We synthesized and characterized a new soluble PPV derivatives (P21) containing 2,5-diphenyl-1,4-phenylene and 2,5-didodecyloxy-1,4-phenylene moieties. The polymer has good solubility, high thermal stability properties and shows high PL efficiency in thin film state (0.36). From electrochemical study, the HOMO and LUMO levels of P21 are estimated to be -5.16 eV and -2.89 eV, respectively. The threshold voltage and luminance of single layer ITO/P21/Al device are 5 V and 104 cd/m2, respectively. Electroluminescence measurement reveals that P21 emits bright yellow light. The luminance of LED made from P21 is about three times higher than the one made from MEH-PPV, suggesting that P21 could be a potential emitting material when used in PLEDs.
(5) Fluorescent sensory characteristics of 2,6-pyridylene chromophore for acid and 3,7-phenothiazylene for oxidation.
A novel copolymer Poly(N-hexyl-3,7-phenothiazylene-1,2- ethenylene-2,6-pyridylene-1,2-ethenylene) (P24) has been synthesized to investigate the effect of protonation, metal complexation and chemical oxidation on its absorption and photoluminescence (PL). Electrochemical investigations reveal that P24 exhibits lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push-pull structure). The absorption and PL spectral variations of P24 can be easily manipulated by protonation, metal-chelation, or chemical oxidation. Thus P24 displays significant bathochromic shift when protonated with trifluoroacetic acid in chloroform. Complexation of P24 with Fe3+ leads to a significant absorption change and fluorescence quenching, implying the coordination of ferric ion to the 2,6-pyridylene groups in backbone. Moreover, phenothiazylene-containing copolymer shows conspicuous PL quenching with slight redshift when oxidized with NOBF4.
[1] R. H. Patridge, Polymer, 24, 733 (1983).
[2] J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
[3] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
[4] D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev., 100, 2537 (2000).
[5] A. Angeli, Gazz. Chim. Ital., 46, 279 (1916).
[6] A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun. 635 (1979).
[7] 蕭如娟,科儀新知,9, 65 (1988).
[8] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1990).
[9] J. Gmeiner, S. Karg, M. Meier, W. Rieβ, P. Strohriegl, M. Schwoerer, Acta. Polym., 44, 201 (1993).
[10] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature., 357, 477 (1992).
[11] P. Herguch, X. Z. Jiang, M. S. Liu, A. K. Y. Jen, Macromolecules., 35, 6094 (2002).
[12] D. R. Baigent, A. B. Holmes, S. C. Moratti, R. H. Friend, Synth. Met., 80, 119 (1996)
[13] M. R. Pinto, B. Hu, F. E. Karasz, Polymer., 41, 8095 (2000)
[14] S. C. Moratti, R. Cervini, A. B. Holmes, D. R. Baigent, R. H. Friend, N. C. Greeham, J. Gruner, P. L. Hamer, Syn. Met., 71, 2117 (1995).
[15] J. L. Brëdas, A. J. Heeger, Chem. Phys. Lett., 217, 507 (1994).
[16] D. R. Baigent, A. B. Holmes, S. C. Moratti, R. H. Friend, Syn. Met., 80, 119 (1996).
[17] D. R. Baigent, N. C. Greeham, J. Gruner, R. N. Marks, R. H. Friend, S. C. Moratti, A. B. Holmes, Syn. Met., 67, 3 (1994).
[18] N. C. Greeham, L. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, R. H. Friend, Chem. Phys. Lett., 241, 89 (1995).
[19] I. D. W. Samuel, G. Rumbles, C. J. Collison, Phys. Rev. B, 52, 11573 (1995), I. D. W. Samuel, G. Rumbles, B. Crystall, S. C. Moratti, A. B. Holmes, Syn. Met., 76, 15 (1996).
[20] (a) E. Conwell, Trend. Polym. Sci., 5, 218 (1997). (b) S. H. Chen, A. C. Su, S. R. Han, S. A. Chen, Y. Z. Lee, Macromolecules., 37, 181 (2004). (c) S. H. Chen, C. H. Su, A. C. Su, S. A. Chen, J. Phys. Chem. B, 108, 8855 (2004).
[21] H. Yun, T. K. Kwei, Y. Okamoto, Macromolecules., 30, 4633 (1997).
[22] Y. Z. Wang, D. D. Gebler, D. K. Fu, T. M. Swager, A. G. Mac Diarmid, A. J. Epstein, Syn. Met., 85, 1179 (1997).
[23] Y. Z. Wang, A. J. Epstein, Acc. Chem. Res., 32, 217 (1999).
[24] A. P. Monkman, L. O. Pålsson, R. W. T. Higgins, C. Wang, M. R. Bryce, A. S. Batsanov, J. A. K. Howard, J. Am. Chem. Soc., 124, 6049 (2002).
[25] F. Meghdali, G. Leising, Y. Z. Wang, D. D. Gebler, T. M. Swager, A. J. Epstein, Syn. Met., 102, 1085 (1999).
[26] S. C. Ng, H. F. Lu, H. S. O. Chan, A. Fujii, T. Laga, K. Yoshino, Macromolecules., 34, 6895 (2001).
[27] M. Gillo, P. Iannelli, P. Laurienzo, M. Malinconico, A. Roviello, Chem. Mater., 14, 1539 (2002).
[28] W. Huang, H. Meng, W.-L Yu, Adv. Mater., 10, 593 (1998).
[29] K. L. Paik, N. S. Baek, H. K. Kim, J. H. Lee, Y. Lee, Macromolecules., 35, 6782 (2002).
[30] S. Janietz, S. Anlauf, Macromol. Chem. Phys., 203, 427 (2002).
[31] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, macromolecules., 32, 1482 (1999).
[32] Z. N. Bao, Z. H. Peng, M. E. Galvin, E. A. Chandross, Chem. Mater., 10, 1201 (1998).
[33] X. Bubin, P. Yongchun, Z. Jianheng, P. Zhonghua, Syn. Met., 114, 337 (2000).
[34] J. W. Jang, D. K. Oh, C. H. Lee, C. E. Lee, J. I. Jin, J. Appl. Phys., 87, 3183 (2000).
[35] Z. Bao, J. A. Rogers, A. Dodabalapur, A. J. Lovinger, H. E. Katz, V. R. Raju, Z. Peng, M. E. Galvin, Opt. Mat., 12, 177 (1999).
[36] Z. H. Peng, Z. N. Bao, M. E. Galvin, Chem. Mater., 10, 2086 (1998).
[37] J. J. Kim, K.-S. Kim, S. Baek, H. C. Kim, M. Ree, J. Polym. Sci. Polym. Chem., 39, 3278 (2001).
[38] H. Li, Y. Geng, S. Tong, H. Tong, R. Hua, G. Su, L. Wang, X. Jing, F. Wang, J. Polym. Sci. Polym. Chem., 40, 1173 (2002).
[39] C. J. Tonzola, M. M. Alam, S. A. Jenekhe, Adv. Mater., 14, 1086 (2002).
[40] X. Zhang, A. S. Shetty, S. A. Jenekhe, Acta. Polym., 49, 52 (1998).
[41] P. Pösch, R. Fink, M. Thelakkat, H.-W. Schmidt, Acta. Polym., 49, 487 (1998).
[42] C. L. Chiang, C. F. Shu, Chem. Mater., 14, 682 (2002).
[43] X. Zhang, S. A. Jenekhe, Macromolecules., 33, 2069 (2000).
[44] R. H. Partidge, Polymer., 24, 739 (1983).
[45] J. Kido, H. Shinoya, K. Nagai, Appl. Phys. Lett., 67, 2281 (1995).
[46] I. Sokolik, Z. Yang, D. C. Morton, F. E. Karasz, J. Appl. Phys., 74, 3584 (1993).
[47] C. Zhang, H. Von Seggern, K. Pakbaz, B. Kraabel, W. H. Schmidt, A. J. Heeger, Synth. Met., 62, 35 (1994).
[48] C. Zhang, H. Von Seggern, B. Kraabel, W. H. Schmidt, A. J. Heeger, Synth. Met., 72, 185 (1995).
[49] G. Wang, C. Yuan, H. Wu, Y. Wei, J. Appl. Phys., 78, 2679 (1995).
[50] M. K. Ryu, J. H. Lee, S. M. Lee, T. Zyung, H. K. Kim, ACS Polym. Mater. Sci. Engng. Proc., 75, 408 (1996).
[51] S. H. Jin, Y. K. Sun, B. H. Shon, W. Kim, Eur. Polym. J., 36, 957 (2000).
[52] X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, J. Am. Chem. Soc., 125, 636 (2003).
[53] T. Ajn, S. Y. Song, H. Ku, Macromolecules., 33, 6764 (2000).
[54] A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, E. P. Woo, Appl. Phy. Lett., 73, 629 (1998).
[55] X. Long, M. Grell, A. Malinovski, D. D. C. Bradley, Opt. Mat., 9, 70 (1998).
[56] S. C. J. Meskers, J. Hübner, M. Oestreich, H. Bässler, J. Phys. Chem. B, 105, 9139 (2001).
[57] M. Fukuda, M. Sawada, K. Yoshino, Jpn J. Appl.Phys., 28, L1433 (1989).
[58] M. Fukuda, M. Sawada, K. Yoshino, J. Polym. Sci. Polym. Chem., 31, 2465 (1993).
[59] T. Yamamoto, A. Morita, Y. Miyazaki, T. Maruyama, H. Wakayama, Z. H. Zhou, Y. Nakamura, T. Kanbara, S. Sasaki, K. Kubota, Macromolecules., 25, 1214 (1992).
[60] U. Scherf, K. Müllen, Makromol. Chem. Rapid Commun., 12, 489 (1991).
[61] Z. Peng, M. E. Galvin, Acta Polymer 49, 244 (1998).
[62] S. Setayesh, D. Marsitzky, and K. Müllen, Macromolecules., 33, 2016 (2000).
[63] G. Klarner, J. I. Lee, M. H. Davey, R. D. Miller, Adv. Mater., 11, 115 (1999).
[64] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed. Eng., 37, 402 (1998).
[65] S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc., 123, 946 (2001).
[66] C. Ego, D. Marsitzky, S. Becker, J. Y. Zhang, A. C. Grimsdale, K. Müllen, J. D. MacKenzie, C. Silva, R. H. Friend, J. Am. Chem. Soc., 125, 437 (2003).
[67] F. Uckert, Y. H. Tak, K. Müllen, H. Basser, Adv. Mat., 12, 905 (2000).
[68] B. K. An, Y. H. Kim, D. C. Shin, S. Y. Park, H. S. Yu, S. K. Kwon, Macromolecules., 34, 3993 (2001).
[69] L. S. Park, Y. S. Han, J. S. Hwang, S. D. Kim, J. Polym. Sci. Polym. Chem., 38, 3173 (2000).
[70] H. Y. Chu, D.-H. Hwang, L.-M. Do, J.-H. Chang, H. K. Shim, A. B. Holmes, T. Zyung, Synth. Met., 101, 216 (1999).
[71] H. Vestweber, R. Sander, A. Greiner, W. Heitz, R. F. Mahrt, H. Baessler, Synth. Met., 64, 141 (1994).
[72] Y. J. Pu, M. Soma, J. Kido, H. Nishide, Chem. Mater., 13, 3817 (2001).
[73] J. M. Shi, S. Y. Zheng, Macromolecules., 34, 6571 (2001).
[74] S. H. Lee, B. B. Jang, T. Tsutsui, Macromolecules., 35, 1356 (2002).
[75] S. J. Chung, J. Jin, K. K. Kim, Adv. Mater., 9, 551 (1997).
[76] J. A. Mikroyannidis, Macromolecules., 35, 9289 (2002).
[77] J. A. Mikroyannidis, Chem. Mater., 15, 1865 (2003).
[78] M. S. Weaver, D. G. Liszey, T. A. Fisher, M. A. Pate, D. O‘Brien, A. Bleyer, A. Tajbaksh, D. D. C. Bradley, M. S. Skolnick, and G. Hill, Thin Solid Films, 273, 39 (1996).
[79] T. X. Wei, J. Zhai, J. H. Ge, L. B. Gan, C. H. Huang, G. B. Luo, L. M. Ying, T. T. Liu, X. S. Zhao Appl. Surf. Sci., 151, 153 (1999).
[80] R. M. G. Rajapakse, A. D. L. Chandani, L. P. P. Lankeshwara, N. L. W. L. Kumarasiri, Synth. Met., 83, 73 (1996).
[81] M. Atreya, S. Li, E. T. Kang, K. G. Neoh, K. L. Tan, Polymer Degradation and Stability., 63, 53 (1999).
[82] L. C. Clark, C. Lyons, N. Y. Ann, Acad. Sci., 102, 29 (1962).
[83] H. K. Youssoufi, M. Hmyene, F. Garnier, D. Delabouglise, J. Chem. Soc. Chem. Commun., 1550 (1993).
[84] J. P. Collin, J. P. Sauvage, J. Chem. Soc. Chem. Commun., 1075 (1987).
[85] P. Bäuerle, S. Scheib, Adv. Mater., 5, 848 (1993).
[86] Y. Miyazaki, T. Yamamoto, Chem. Lett., 41 (1994).
[87] T. W. Brockmann, J. M. Tour, J. Am. Chem. Soc., 117, 4437 (1995).
[88] Q. Zhou, J. M. Tour, J. Am. Chem. Soc., 117, 7017 (1995).
[89] J. Roncali, R. Garreau, D. Delabouglise, F. Garnier, M. Lemaire, J. Chem. Soc. Chem. Commun., 679 (1989).
[90] K. Hosoya, K. Yoshihako, Y. Shirasu, K. Kimata, T. Araki, N. Tanaka, J. Haginaka, J. Chromatogr., 708, 139 (1996).
[91] M. A. Vorderbruggen, K. Wu, C. M. Breneman, Chem. Mater., 8, 1106 (1996).
[92] H. K. Youssoufi, M. Hmyene, F. Garnier, D. Delabouglise, J. Chem. Soc. Chem. Commun., 1550 (1993).
[93] J. L. Reddinger, J. R. Reynolds, Chem. Mater., 10, 3 (1998).
[94] M. J. Marsella, T. M. Swager, J. Am. Chem. Soc., 115, 12214-5 (1993).
[95] R. Ungaro, A. Pochini, In Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, A.-J.; Durr, Eds.; VCH: New York, 1991; Chapter 3, p 57-81.
[96] M. J. Marsella, R. J. Newland, P. J. Carroll, T. M. Swager, J. Am. Chem. Soc., 117, 9842-9848 (1995).
[97] Q. T. Zhang, J. M. Tour, J. Am. Chem. Soc., 119, 9624 (1997).
[98] D.-K. Fu, B. Xu, T. M. Swager, Tetrahedron., 53, 15487 (1997).
[99] M. Kimura, T. Horai, K. Hanabusa, H. Shirai, Adv. Mater., 10, 459 (1998).
[100] B. Liu, W.-L. Yu, J. Pei, S.-Y. Liu, Y.-H. Lai, W. Huang, Macromolecules, 34, 7932 (2001).
[101] T. Yasuda, I. Yamaguchi, T. Yamamoto, Adv. Mater., 15, 293 (2003).
[102] A. S. Shetty, E. B. Liu, R. J. Lachicotte, S. A. Jenekhe, Chem. Mater., 11, 2292 (1999).
[103] S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules, 34, 7315 (2001).
[104] J. A. Osaheni, S. A. Jenekhe, , Macromolecules, 26, 4726 (1993).
[105] Y. H. So, J. M. Zaleski, C. Murlick, A. Ellaboudy, Macromolecules, 29, 2783 (1996).
[106] J. A. Osaheni, S. A. Jenekhe, Macromolecules, 28, 1172 (1995).
[107] T. Yamamoto, K. Sugiyama, T. Kanbara, H. Hayashi, H. Etori, Macromol. Chem. Phys., 199, 1807 (1998).
[108] N. J. Turro, Modern molecular photochemistry, Mill Valley, Calif.: University Science Books, 1991, p 70.
[109] C. Reichardt, Solvents and Solvent Effect in Organic Chemistry; Verlag Chemie: New York, 1988; Chapter 6.
[110] S. A. Jenekhe, J. A. Osaheni, Science, 265, 765 (1994).
[111] J. R. Lakowicz . Principles of fluorescence spectroscopy, 2nd ed, Plenum Publishers, New York. 1999, p9.
[112] J. R. Lakowicz . Principles of fluorescence spectroscopy, 2nd ed, Plenum Publishers, New York. 1999, p237.
[113] M. H. Schoenfisch, H. Zhang, M. C. Frost, M. E. Meyerhoff, Anal. Chem., 74, 5937-5941 (2002).
[114] J. L. Brodas, B. Themans, J. M. Andre, Synth. Met., 9, 265 (1984).
[115] Prasanna Chandrasekhar Conducting Polymers: Fundamentals and Applications a Practical Approach, 1999 Kluwer Academic Publishers, p35.
[116] H. Görner, H. J. Kuhn, Adv. Photochem., 19, 1-117 (1995).
[117] S. Nakatsuji, K. Matsuda, Y. Uesugi, K. Nakashima, S. Akiyama, G. Katzer, W. Fabian, J.Chem. Soc. Perkin Trans. 2, 861-867 (1991).
[118] R. S. Mulliken, J. Chem. Phys., 23, 1833-1846, 2338-2346 (1955).
[119] K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken, B.Winter, Angew. Chem .Int. Ed., 30, 516 (1991).
[120] J. Bourson, B. Valeur, J. Phys. Chem. 93, 3871 (1989).
[121] I. Aoki, H. Kawabata, K. Nakashima, S. Shinkai, J. Chem. Soc. Chem. Commun., 1771 (1991).
[122] H. B. Layrent, A. Castellan, M. Daney, J. P. Desvergne, G. Guinand, P. Marsau, M. H. Riffaud, J. Am. Chem. Soc., 108, 315 (1986).
[123] B. Valeur, I. Leray, Coord. Chem. Rev., 205, 3 (2000).
[124] E. N. Ushakov, S. P. Gromov, O. A. Fedorova, M.V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 484 (1997) [Russ. Chem. Bull., 46, 463 (1997)].
[125] K. Rurack, J. L. Bricks, A. Kachkovski, U. Resch, J. Fluoresc., 7, 63S (1997).
[126] N. Mateeva, V. Enchev, L. Antonv, T. Deligeorgiev, M. Mitewa, J. Incl. Phenom., 93, 323 (1995).
[127] J. R. Lakowicz. Principles of fluorescence spectroscopy, 2nd ed, Plenum Publishers, New York. 1999, p13.
[128] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental analysis 5th ed, Harcourt Brace & Co., 1998, chapter 15.
[129] T. M. Swager, Acc. Chem. Res., 31, 201 (1998).
[130] B. Wang, M. R. Wasielewski, J. Am. Chem. Soc., 119, 12 (1997).
[131] http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch17/ch17-3-2-3.html
[132] (a) L. Horner et at, Chem. Ber., 91, 61 (1958); 92, 2499 (1959). (b) W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc., 83, 1733 (1961).
[133] O. Meth-Cohn, S. P. Stanforth, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Pergamon Press: Oxford, Vol. 2, Chap. 3.5 (1991).
[134] A. Michaelis, R. Kaehne, Chem. Ber., 31, 1048 (1898).
[135] A. E. Arbuzov, J. Russ. Phys. Chem. Soc., 38, 687 (1906).
[136] L. F. Tietze, U. Beifuss, in Comprehensive Organic Synthesis (Trost, B. M.; I. Fleming, Eds.), Pergamon Press: Oxford, Vol. 2, Chap. 1.11 (1991).
[137] R. W. Lenz, C. E. Handlovits, J. Org. Chem., 25, 813 (1960).
[138] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature., 365, 628 (1993).
[139] N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995).
[140] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
[141] Y. Sato, S. Ichinosawa, H. Hanai, A. J. Heeger, IEEE Journal of Selected Topics in Quantum Electronics., 4, 40 (1998).
[142] L. Do, E. Han, N. Yamamoto, M. Fujihira, Mol. Cryst. Liq. Cryst., 280, 373 (1996).
[143] F. Papadimitrakopoulos, X. Zhang, D. L. Thomsen, K. A. Higginson, Chem. Mater., 8, 1363 (1996).
[144] H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp, G. Xu, Appl. Phys. Lett., 72, 756 (1998).
[145] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, M. E. Thompson, Appl. Phys. Lett., 65, 2922 (1994).
[146] J. Mcelvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheets, R. L. Moon, J. Appl. Phys., 80, 6002 (1996).
[147] H. Aziz, G. Xu, J. Phys. Chem. B, 101, 4009 (1997).
[148] H. Aziz, Z. Popovic, C. Tripp, N. X. Hu, A. M. Hor, G. Xu, Appl. Phys. Lett., 72, 2642 (1998).
[149] M. Probst, R. Haight, Appl. Phys. Lett., 70, 1420 (1997).
[150] W. Brutting, E. Buchwald, G. Rgerer, M. Meier, K. Zuleeg, M. Schwoerer, Synth. Met., 84, 677 (1997).
[151] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
[152] V. E. Choong, B. R. Hsieh, C. W. Tang, Y. Park, Y. Gao, Macromol. Symp., 125, 83 (1997).
[153] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, N. Peyghambarian, Appl. Phys, Lett., 71, 1762 (1997).
[154] L. S. Hung et al, Appl. Phys, Lett., 70, 152 (1997).
[155] G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys, Lett., 73, 1185 (1998).
[156] H. H. Hoerhold, H. Rost, A. Teuschel, W. Kreuder, H. Spreitzer, Proc SPIE., 3148, 139 (1997).
[157] J. H. Lee, J. W. Park, S. K. Choi, Synth. Met., 88, 31-35 (1997).
[158] H. Oelschlager, H. J. Peters, Arch. Pharm. (Weinheim), 320, 379 (1987).
[159] K. D. Kim, J. S. Park, H .K. Kim, T. B. Lee, K. T. No, Macromolecules, 31, 7267 (1998).
[160] A. Menon, H. P. Dong, Z. I. Niazimbetova, L. J. Rothberg, M. E. Galvin, Chem. Mater., 14, 3668 (2002).
[161] H. K. Kim, M. K. Ryu, K. D. Kim, S. M. Lee, S. W. Cho, J. W. Park, Macromolecules, 31, 1114 (1998).
[162] R. Chang, J. H. Hsu, W. S. Fann, J. Yu, S. H. Lin, Y. Z. Lee, S. A. Chen, Chem. Phys. Lett., 317, 153 (2000).
[163] D. A. M. Egbe, H. Tillmann, E. Birckner, E. Klemm, Macromol. Chem. Phys., 202, 2712 (2001).
[164] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
[165] L. Liao, Y. Pang, L. Ding, F. E. Karasz, J. Polym. Sci. Polym. Chem., 41, 3149 (2003).
[166] M. Zheng, F. Bai, Y. Li, G. Yu, C. Yang, D. Zhu, Synth. Met., 102, 1275 (1999).
[167] J. N. Demas, G. A. Crosby, J. Phys. Chem., 75, 991 (1971).
[168] H. W. Hwang, Y. Chen, Macromolecules, 34, 2981 (2001).
[169] G. G. Guilbault, Ed. Practical Fluorescence, 2nd ed.; Marcel Dekker Inc.: New York, 1990.
[170] a) S. H. Jin, Y. K. Sun, B. H. Sohn, W. Kim, Eur. Polym. J., 36, 957 (2000). b) B. E. Koene, D. E. Loy, M. E. Thompson, Chem. Mater., 10, 2235 (1998).
[171] C. J. Yang, S. A. Jenekhe, Macromolecules, 28, 1180 (1995).
[172] T. Miyame, D. Yoshimura, H. Ishii, Y. Ouchi, K. Seki, T. Miyazaki, T. Koike, T. Yamamoto, J. Chem. Phys., 103 (7), 2738 (1995).
[173] X.-C. Li, A. Kraft, R. Cervini, G. C. W. Spencer, F. Cacialli, R. H. Friend, J. Gruener, A. B. Holmes, J. C. Mello, S. C. Moratti, Mater. Res. Soc. Symp. Proc., 413, 13 (1996).
[174] G. G. Malliaras, J. C. Scott., J. Appl. Phys., 84, 1583 (1998).
[175] O. Lhost, J. L. Bredas. J. Chem. Phys., 96, 5279 (1992).
[176] M. R. Pinto, B. Hiu, F. E. Karasz, L. Akcelrud, Polymer, 41, 2603 (2000).
[177] D. D. C. Bradley, Synth. Met., 54, 401 (1993).
[178] C. S. Krämer, K. Zeitler, T. J. Müller, Tetrahedron Lett., 42, 8619 (2001).
[179] X. Kong, A. P. Kulkarni, S. A. Jenekhe, Macromolecules, 36, 8992 (2003).
[180] a) D. Hertel, H. Bassler, U. Scherf, H. H. Hörhold, J. Chem. Phys., 110, 9214 (1999). b) B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. K. Rubner, Appl. Phys. Lett., 66, 1316 (1995).
[181] Y. Chen, T.-Y. Wu, Polymer, 42, 9895 (2001).
[182] S. Pfeiffer, H. Rost, H.-H. Horhold, Macromol. Chem. Phys., 200, 2471 (1999).
[183] S. H. Jin, Y. K. Sun, B. H. Sohn, W. Kim, Eur. Polym. J., 36, 957 (2000).
[184] M. Berggren, G. Gustafsson, O. Inganas, M. R. Andersson, O. Wennerstrom, T. Hjertberg, Adv. Mater., 6, 488 (1994).
[185] X. Zhan, Y. Liu, X. Wu, S. Wang, D. Zhu, Macromolecules, 35, 2529 (2002).
[186] B.-L. Lee, T. Yamamoto, Macromol. Chem. Phys., 200, 2396 (1999).
[187] N. G. Tessler, J. Denton, R. H. Friend, Nature, 382, 695 (1993).
[188] R. Brown, D. D. C. Bradley, P. L. J. Burn, H. Burroughes, R. H. Friend, N. Greenham, A. Kraft, Appl. Phys. Lett., 61, 2793 (1992).
[189] Y. Eichen, G. Nakhmanovich, V. Gorlik, O. Epshtein, J. M. Poplawski, E. Ehrenfreund, J. Am. Chem. Soc., 120, 10463 (1998).
[190] Z. Wang, X. Yang, X. Z. Chen, Z. Xu, Thin Solid Films, 363, 94 (2000).
[191] G. Du, B. Taylor, R. J. Spry, M. Alexander, C. Grayson, J. Ferguson, B. Reinhardt, J. Burkett, Synth. Met., 97, 135 (1998).
[192] R. Y. Lai, E. F. Fabrizio, L. Lu, S. A. Jenekhe, A. J. Bard, J. Am. Chem. Soc., 123, 9112 (2001).
[193] 楊吉水,化學, 60, 611 (2003).
[194] C. S. Wang, M. Kilitziraki, J. A. H. MacBride, M. R. Bryce, L. E. Horburgh, A. K. Sheridan, A. P. Monkman, I. D. W. Samuel, Adv. Mater., 12, 217 (2000).
[195] T.-Y. Wu, Y. Chen, J. Polym. Sci. A Polym. Chem., 40, 4570 (2002).
[196] X. Zhang, D. M. Kale, S. A. Jenekhe, Macromolecules, 35, 382 (2002).
[197] Y. Chen, Y.-Y. Huang, T.-Y. Wu, J. Polym. Sci. A Polym. Chem., 40, 2927(2002).
[198] R. E. Trifonov, N. I. Ritshchev, V. A. Ostrovskii, Spectrochim Acta A, , 52, 1875 (1996).
[199] W. L. Yu, H. Meng, J. Pei, W. Huang, Y. F. Li, A. J. Heeger, Macromolecules, 31, 4838 (1998).
[200] 許榮賓;”含發光基及噁二唑基高分子的合成與光電性質探討”,國立成功大學化學工程系碩士論文,民國九十一年。
[201] S. Janietz, S. Anlauf, Macromol. Chem. Phys. 2002, 203, 427.
[202] S. S. Sun, A. J. Lees, J. Photochem. Photobiol. A, 140, 157 (2001).
[203] D. A. M. Egbe, B. Cornelia, J. Nowotny, W. Gunther, E. Klemm, Macromolecules, 36, 5459 (2003).
[204] M. S. Liu, X. Jiang, S. Liu, P. Herguth, A. K.-Y. Jen, Macromolecules, 35, 3532 (2002).
[205] M. Jayakannan, P. J. Van Hal, R. A. J. Janssen, J. Polym. Sci. Part. A Polym. Chem., 40, 251 (2002).
[206] M. Jayakannan, P. J. Van Hal, R. A. J. Janssen, J. Polym. Sci. Part. A Polym. Chem., 40, 2360 (2002).
[207] T.-Y. Wu, Y. Chen, J. Polym. Sci. Part. A Polym. Chem., 40, 3847 (2002).
[208] J. H. Kim, H. Lee, Chem. Mater., 14, 2270 (2002).
[209] Z. Peng, Z. Bao, M. E. Galvin, Chemtech, 29, 41 (1999).
[210] Z. Peng, M. Galvin, Acta. Polym., 49, 244 (1998).
[211] N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, R. H. Friend, Chem. Phys. Lett., 241, 89 (1995).
[212] C. L. Gettinger, A. J. Heeger, J. M. Drake, D. J. Pine, J. Chem. Phys., 101, 1673 (1994).
[213] L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, T. M. Miller, Synth. Met., 80, 41 (1996).
[214] J. M. Tour, Adv. Mater., 6, 190 (1994).
[215] S. Sasaki, T. Yamamoto, T. Kanbara, A. Morita, J. Polym. Sci. Part B: Polym. Phys. 30, 293 (1992).
[216] B. R. Hsieh, Y. Yu, A. C. VanLaeken, H. Lee, Macromolecules, 30, 8094 (1997).
[217] L. J. Rothberg, M. Yan, E. W. Kwock, T. M. Miller, M. E. Galvin, S. Son, F. Papadimitrakopoulos, IEEE Trans. Electron Devices, 44, 1258 (1997).
[218] P. D. Beer, P. A. Gale, Angew. Chem. Int. Ed., 40, 486-516 (2001).
[219] K. Haupt, K. Mosbach, Chem. Rev., 100, 2495-2504 (2000).
[220] I. Lévesque, M. Leclerc, Chem. Mater., 8, 2843 (1996).
[221] K. Yoshino, S. Nakajima, M. Onoda, R. Sugimoto, Synth. Met., 28, C349 (1989).
[222] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev., 97, 1515 (1997).
[223] A. M. Sarker, E. E. Gürel, M. Zheng, P. M. Lahti, F. E. Karasz, Macromolecules, 34, 5897 (2001).
[224] Y. Chen, S.-P. Lai, J. Polym. Sci. Part A Polym. Chem., 39, 2571 (2001).
[225] W. Y. Huang, H. Yun, H. S. Lin, T. K. Kwei, Y. Okamoto, Macromolecules, 32, 8089 (1999).
[226] A. W. Czarnik, Acc. Chem. Res., 27, 302 (1994).
[227] Y. Zhang, C. B. Murphy, W. E. Jones, Macromolecules, 35, 630 (2002).
[228] H. Kamogawa, J. Polym. Sci. Part A Polym. Chem., 10, 95 (1972).
[229] H. Kamogawa, J. M. Larkin, K. Toei, H. G. Cassidy, J. Polym. Sci. Part A General Papers, 2, 3603 (1964).
[230] H. Kamogawa, Y. Todo, M. Nanasawa, J. Polym. Sci. Part A Polym. Chem., 19, 2571 (1981).
[231] H. Kamogawa, M. Kobayashi, S. Yoshihara, J. Polym. Sci. Part A Polym. Chem., 24, 1565 (1986).
[232] D. M. Chapman, A. C. Buchanan, G. P. Smith, G. Mamatov, J. Am. Chem. Soc., 108, 654 (1986).
[233] B. K. Bandlish, H. J. Shine, J. Org. Chem., 42, 561 (1977).