| 研究生: |
呂健瑋 Lue, Chien-Wei |
|---|---|
| 論文名稱: |
有機共軛高分子奈子粒子之照光反應研究 Organic Conjugated Polymer Nanoparticles for Illumination Study |
| 指導教授: |
郭宗枋
Guo, Tzung- Fang 黃守仁 Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 有機奈米顆粒 、照光反應 、共軛高分子 、有機光反應材料 |
| 外文關鍵詞: | organic semiconductor, photoreactive, polymer colloid, organic photo-catalyst, organic nano particles |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們藉由有機共軛高分子對溶劑溶解度的差異性,使用界面活性劑並配合異相微乳化(mini-emulsion)的沉析技術,成功的於水溶液中製作以共軛有機高分子材料為主體之奈米顆粒(organic semiconductor nano-sphere),並研究其在照光激發下的光化學作用與其在自身可分解反應的有機奈米光反應材料之應用。在我們的研究中發現,當使用polyfluorene或者是poly(phenylene-vinylene)衍生物的共軛高分子材料,參雜C60之衍生物([6,6]-phenyl C61 butyric acid methyl ester,PCBM)於有機奈米顆粒之製作,由於兩種材料內部分子能階的差異性質,可以形成一組絕佳的激發態分子(exciton)電子,予體-受體(Donor-Acceptor)之分子能階組合,在一般可見光照射的情形之下,此予體-受體的界面非常有效率的轉移激發態有機共軛高分子的電荷載子,而達到電荷分離的目的,並可近一步的轉移其相反電荷載子至水溶液中,產生高反應性的自由基,例如:過氧自由基與氫氧自由基。初步的實驗結果發現,我們所製作的共軛有機高分子材料奈米顆粒,可以以特定的官能基選擇性的吸附在配置(pattern)的基板表面,並在照光的情形下,確實的抑制或者是阻絕金黃葡萄球菌(Staphylococcus aureus)的生長。
We report the fabrication of organic semiconductor nano-particles(OSNPs) based on the mini-emulsion of conjugated polymers. The colloids composed of polyfluorene co-polymers and derivatives of poly(pheylene-vinylene) with electron acceptor materials were stabilized by the surfactant and dispersed homogeneously at the aqueous solutions. Under the illumination, the photoluminescence of OSNPs was quenched due to the ultra fast electron transfer from the excitons on the polymer chain to the electron acceptors. Highly reactive free radicals, such as super oxide anions and hydroxyl radicals, were generated at the excited OSNPs by the separated electrons and holes, respectively. They function as a block agent to inhibit the duplication of DNA for virus or to react with the nearby organisms. The colloid particles can be transferred to the testing substrate or used directly in the aqueous solution.
1. A. Fujishma and K. Honda, Nature, 238, 37 (1972)
2. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95,735 (1995)
3. A. Maldotti, A. Molinari, and R. Amadelli, Chem. Rev. 102, 3881 (2002)
4. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science. 293, 269 (2001)
5. H. Kisch,and W. Macyk, CHEMPHYSCHEM. 3, 399 (2002)
6. L. Zang,W. Macyk, C. Lange, W. F. Maier, C. Antonius, Dieter. Meissner, and H. Kisch, Chem. Eur. J. 6, 379 (2000)
7. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990)
8. K. Landfester, Macromol. Rapid Commun. 22, 896 (2001)
9. K. Landfester, Adv. Mater. 13, 765 (765)
10. K. Landfester. R. Montenegro, U. Scherf, R. Guntner, U. Asawapirom, S. Patil, Dieter Neher, and T. Kietzke. Adv. Mater, 14, 651 (2002)
11. T. Piok, S. Gamerith, C. Gadermaier, H. Plank, F. P. Wenzl, S. Patil, R. Montenegro, T. Kietzke, D. Neher, U. Scherf, K. Landfester, and Emil. J. W. List. Adv. Mater. 15, 800 (2003)
12. G. Yu. Gao, J. C. Hummelene, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995)
13. www.thermalphysics.org/
14. 李定粵,觸媒的原理與應用,正中書局、十月 (1999)
15. R. Spinicci, Journal of Molecular Catalysis A: Chemical, 197, 147 (2003)
16. 科學發展,376期,2004年4月
17. S. Icli, S. Demic, B. Dindar, A. O. Doroshenko, and C. Timur. J. Photochem. Photobiol. A: Chem136, 15 (2000)
18. L. Chen, L. A. Lucia, E. R. Gaillard, D. G. Whitten, H. Icil, and S. Icil, J. Phys. Chem. A,102, 9095 (1998)
19. F. Kitagawa, M. Murase, and N. Kitamura. J. Org. Chem. 67, 2524 (2002)
20. T. Shibata, A. Kabumoto, T. Shiragami, O. Ishitani, C. Pac, and S. Yanagida, J. Phys. Chem. 94, 2068 (1990)
21. D. Yoo, S. S. Shiratori, and M. F. Rubner, Macromolecules, 31, 4309 (1998)
22. S. S. Shuratori and M. F. Rubner, Macromolecules, 33, 4213 (2000)
23. J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, and M. F. Ruberner, Langmuir, 16, 5017 (2000)