| 研究生: |
楊雪慧 Yang, Shiue-Huei |
|---|---|
| 論文名稱: |
二維雙曲線型生物熱傳問題之新數值分析 New Numerical Analysis Study of Two-Dimensional Hyperbolic Bioheat Transfer Problems |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 特徵函數展開法 、傅立葉餘弦積分轉換法 、混合數值法 、非傅立葉熱傳導 、生物熱傳 |
| 外文關鍵詞: | Eigenfunction expansion, Fourier-cosine integral transform, hybrid technique of the Laplace transform, non-Fourier law, bioheat transfer |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出以混合拉氏轉換法並配合特徵函數或傅立葉餘弦積分轉換法來解析非傅立葉熱傳導問題及具有熱波效應之生物熱傳問題。本文乃先以特徵函數展開法或傅立葉餘弦積分轉換法將二維統御方程式簡化成一維方程式。而後再以拉氏轉換法、控制體積法與雙曲線形狀函數之混合數值方法來解析簡化後之方程式。此方法之特點為運算過程簡單又能求得精確的數值解。
為了驗證本文方法之有效性與精確性,本文將例舉各種不同型式之問題。文中並探討血流灌注率及加熱功率對生物組織內部溫度分佈的影響,結果顯示本文之數值結果頗吻合其它文獻之結果。二維生物熱傳之熱波問題中統御方程式含有時變量之加熱源,亦能得到合理物理現象下之溫度分佈。
The present study proposes the hybrid technique of the Laplace transform and the Eigenfunction expansion or Fourier-cosine integral transform method to analyze the two-dimensional non-Fourier heat conduction problems and bioheat transfer problems with the wave phenomenon. Due to the application of Eigenfunction expansion method, the two-dimensional governing differential equation is simplified as an one-dimensional partial differential equation, which are then solved efficiently in conjunction with the Laplace transform, control volume method and hyperbolic shape function in order to suppress numerical oscillation due to the wave front discontinue vicinity.
To validate the efficiency and accuracy of the present proposed method, the comparison among the present numerical results, analytical solution and the previous results will be made. The results shows that the estimations solved by the proposed Eigenfunction expansion method were numerically stable, even in the case of two-dimensional hyperbolic bioheat transfer problems with time dependent heat source considered.
[1]C. Cattaneo, “Sulla conduzione de calore, ” Atti del Semin. Mat. E Fis. Univ. Modena, vol. 3, pp. 3, 1948.
[2]H. H. Pennes,“Analysis of tissue and arterial temperatures in the resting human forearm,”J. Applied Phys, vol. 1, pp. 93-122, 1948.
[3]W. Wulff,“The energy conservation equation for living tissue, ”IEEE Trans. on Biomedical Eng. , BME-21, pp. 494-495, 1974.
[4]E. M. Wissler,“Mathematical simulation of human thermal behavior using whole-body models,”Plenum Press, pp. 325-373, 1985.
[5]B. X. Wang and Y. M. Wang,“Study on the basic equations of biomedical heat transfer,”Transport Phenomena Science and Technology, pp.273-276, Beijing, China : Higher Education Press, 1992.
[6]D. Y. Tzou,“On the thermal shock wave induced by a moving heat source,”ASME. J. Heat Transfer, vol. 111, pp.232-238, 1989.
[7]J. C. Maxwell, “On the Dynamic Theory of gases,” Philos. Trans. Soc. London, vol. 157, pp.49-88, 1867.
[8]V. Peshkov, “Second sound in helium Ⅱ,” J. Phys. USSR, vol. 8, pp. 381, 1944.
[9]A. V. Luikov,“Analytical Heat Diffusion Theory,”Academic Press, New York, pp. 245-248, 1968.
[10]M. J. Maurer and H. A. Thompson,“Non-Fourier effects at high heat flux,”ASME. J. Heat Transfer, vol. 95, pp. 284-286, 1973.
[11]G. Honig and U. Hirdes,“A method for the numerical inversion of Laplace transforms,”J. Comp. Appl. Math, vol. 10, pp. 113-132, 1984.
[12]W. Kaminski,“Hyperbolic heat conduction equation for material with a nonhomogenous inner structure,”ASME. J. Heat Transfer, vol. 112, pp. 555-560, 1990.
[13]K. Mitra, S. Kumar, A. Vedavarz and M. K. Moallemi“Experiment evidence of hyperbolic heat conduction in processed meat,”ASME. J. Heat Transfer, vol. 117, pp 568-573, 1995.
[14]H. Herwig and K. Beckert,“Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure,”Heat Mass Transfer, vol. 36, pp. 387-392, 2000.
[15]W. S. Kim, L. G. Hector, and M. N. Özisik,“Hyperbolic heat conduction due to axisymmetric continuous or pulsed surface heat sources,”J. Appl. Phys, vol. 68, pp. 5478-5485, 1990.
[16]A. Vedavarz, K. Mitra and S. Kumar,“Hyperbolic temperature profiles for laser surface interactions,”J. Appl. Phys, vol. 76, pp.5014-5021, 1994.
[17]H. T. Chen and J. Y. Lin, “Study of hyperbolic heat conduction with temperature dependent thermal properties,” ASME. J. Heat Transfer, vol. 116, pp. 750-753, 1994.
[18]H. T. Chen and J. Y. Lin, “Analysis of two-dimensional hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, vol. 37, pp. 153-164, 1994.
[19]J. Y. Lin and H. T. Chen, “Numerical solution of hyperbolic heat conduction in cylindrical and spherical systems,” Appl. Math. Modelling, vol. 18, pp. 384-390, 1994.
[20]D. Frayce, R. E. Khayat, and A. Derdouri,“A dual reciprocity boundary element approach to three-dimensional transient materials processing,”Numer. Heat Transfer, Part A, vol. 29, pp, 243-264, 1996.
[21]劉靜,王存誠,生物傳熱學,科學出版社,1997。
[22]W. Q. Lu, J. Liu and Y. Zeng,“Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method,”Engineering Analysis with Boundary Elements, vol. 22, pp. 167-174, 1998.
[23]盧基業,“二維非傅立葉熱傳問題之研究”,國立成功大學機械工程學系,碩士論文,1999。
[24]王鴻儒,“以熱波理論探討生物組織的傳熱現象”, 國立成功大學機械工程學系,碩士論文,2000。
[25]劉國基,“雙曲線型擴散問題之探討”,國立成功大學機械工程學系,博士論文,2002。
[26]Q. M. Fan and W. Q. Lu, “A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium,” Int. J. Heat Mass Transfer, vol. 45, pp. 2815-2821, 2002.
[27]C. S. Tsai, Y. C. Lin and C. I. Hung, “A study on the non-Fourier effects in spherical media due to sudden temperature changes on the surfaces,” Heat Mass Transfer, vol. 41, pp. 709-716, 2005.
[28]T. M. Chen, “Numerical solution of hyperbolic heat conduction in thin surface layers,” Int. J. Heat Mass Transfer, vol. 50, pp. 4424-4429. 2007.
[29]C. Y. Yang, “Direct and inverse solutions of the two-dimensional hyperbolic heat conduction problems,” Applied Mathematical Modelling, vol. 33, pp. 2907-2918, 2009.
[30]T. M. Chen, “A hybrid Green’s function method for the hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, vol. 52, pp. 4273-4278, 2009.
[31]K. C. Liu,“Thermal propagation analysis for living tissue with surface heating,”Int. J. Thermal Sciences, vol. 47, pp. 507-513, 2008.
[32]S. Özen, S. Helhel and O. Cerezci,“Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT),”Burns, vol. 34, pp. 45-49, 2008.
[33]K. C. Liu and H. T. Chen, “Analysis for the dual-phase-lag bio- heat transfer during magnetic hyperthermia treatment,” Int. J. Heat Transfer, vol. 52, pp. 1185-1192, 2009.
[34]J. Zhou, Y. Zhang and J. K. Chen,“An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues,”Int. J. Thermal Sciences, vol. 48, pp. 1477-1485, 2009.