簡易檢索 / 詳目顯示

研究生: 楊雪慧
Yang, Shiue-Huei
論文名稱: 二維雙曲線型生物熱傳問題之新數值分析
New Numerical Analysis Study of Two-Dimensional Hyperbolic Bioheat Transfer Problems
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 特徵函數展開法傅立葉餘弦積分轉換法混合數值法非傅立葉熱傳導生物熱傳
外文關鍵詞: Eigenfunction expansion, Fourier-cosine integral transform, hybrid technique of the Laplace transform, non-Fourier law, bioheat transfer
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出以混合拉氏轉換法並配合特徵函數或傅立葉餘弦積分轉換法來解析非傅立葉熱傳導問題及具有熱波效應之生物熱傳問題。本文乃先以特徵函數展開法或傅立葉餘弦積分轉換法將二維統御方程式簡化成一維方程式。而後再以拉氏轉換法、控制體積法與雙曲線形狀函數之混合數值方法來解析簡化後之方程式。此方法之特點為運算過程簡單又能求得精確的數值解。
    為了驗證本文方法之有效性與精確性,本文將例舉各種不同型式之問題。文中並探討血流灌注率及加熱功率對生物組織內部溫度分佈的影響,結果顯示本文之數值結果頗吻合其它文獻之結果。二維生物熱傳之熱波問題中統御方程式含有時變量之加熱源,亦能得到合理物理現象下之溫度分佈。

    The present study proposes the hybrid technique of the Laplace transform and the Eigenfunction expansion or Fourier-cosine integral transform method to analyze the two-dimensional non-Fourier heat conduction problems and bioheat transfer problems with the wave phenomenon. Due to the application of Eigenfunction expansion method, the two-dimensional governing differential equation is simplified as an one-dimensional partial differential equation, which are then solved efficiently in conjunction with the Laplace transform, control volume method and hyperbolic shape function in order to suppress numerical oscillation due to the wave front discontinue vicinity.
    To validate the efficiency and accuracy of the present proposed method, the comparison among the present numerical results, analytical solution and the previous results will be made. The results shows that the estimations solved by the proposed Eigenfunction expansion method were numerically stable, even in the case of two-dimensional hyperbolic bioheat transfer problems with time dependent heat source considered.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 符號說明 IX 第一章 緒論 1 1-1研究背景 1 1-2文獻回顧 2 1-3研究目的 5 1-4研究架構 6 第二章 二維直角座標之非傅立葉熱傳導問題 7 2-1簡介 7 2-2理論分析 7 2-3結果與討論 13 2-4結論 16 第三章 生物組織之熱波問題 23 3-1簡介 23 3-2理論分析 24 3-3結果與討論 31 3-4結論 37 第四章 圓柱座標系統之雙曲線型熱傳導問題 47 4-1簡介 47 4-2理論分析 47 4-3結果與討論 54 4-4結論 55 第五章 綜合結論與未來展望 59 5-1綜合結論 59 5-2未來展望 60 參考文獻 61 自述 65

    [1]C. Cattaneo, “Sulla conduzione de calore, ” Atti del Semin. Mat. E Fis. Univ. Modena, vol. 3, pp. 3, 1948.

    [2]H. H. Pennes,“Analysis of tissue and arterial temperatures in the resting human forearm,”J. Applied Phys, vol. 1, pp. 93-122, 1948.

    [3]W. Wulff,“The energy conservation equation for living tissue, ”IEEE Trans. on Biomedical Eng. , BME-21, pp. 494-495, 1974.

    [4]E. M. Wissler,“Mathematical simulation of human thermal behavior using whole-body models,”Plenum Press, pp. 325-373, 1985.

    [5]B. X. Wang and Y. M. Wang,“Study on the basic equations of biomedical heat transfer,”Transport Phenomena Science and Technology, pp.273-276, Beijing, China : Higher Education Press, 1992.

    [6]D. Y. Tzou,“On the thermal shock wave induced by a moving heat source,”ASME. J. Heat Transfer, vol. 111, pp.232-238, 1989.

    [7]J. C. Maxwell, “On the Dynamic Theory of gases,” Philos. Trans. Soc. London, vol. 157, pp.49-88, 1867.

    [8]V. Peshkov, “Second sound in helium Ⅱ,” J. Phys. USSR, vol. 8, pp. 381, 1944.

    [9]A. V. Luikov,“Analytical Heat Diffusion Theory,”Academic Press, New York, pp. 245-248, 1968.

    [10]M. J. Maurer and H. A. Thompson,“Non-Fourier effects at high heat flux,”ASME. J. Heat Transfer, vol. 95, pp. 284-286, 1973.

    [11]G. Honig and U. Hirdes,“A method for the numerical inversion of Laplace transforms,”J. Comp. Appl. Math, vol. 10, pp. 113-132, 1984.

    [12]W. Kaminski,“Hyperbolic heat conduction equation for material with a nonhomogenous inner structure,”ASME. J. Heat Transfer, vol. 112, pp. 555-560, 1990.

    [13]K. Mitra, S. Kumar, A. Vedavarz and M. K. Moallemi“Experiment evidence of hyperbolic heat conduction in processed meat,”ASME. J. Heat Transfer, vol. 117, pp 568-573, 1995.

    [14]H. Herwig and K. Beckert,“Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure,”Heat Mass Transfer, vol. 36, pp. 387-392, 2000.

    [15]W. S. Kim, L. G. Hector, and M. N. Özisik,“Hyperbolic heat conduction due to axisymmetric continuous or pulsed surface heat sources,”J. Appl. Phys, vol. 68, pp. 5478-5485, 1990.

    [16]A. Vedavarz, K. Mitra and S. Kumar,“Hyperbolic temperature profiles for laser surface interactions,”J. Appl. Phys, vol. 76, pp.5014-5021, 1994.

    [17]H. T. Chen and J. Y. Lin, “Study of hyperbolic heat conduction with temperature dependent thermal properties,” ASME. J. Heat Transfer, vol. 116, pp. 750-753, 1994.

    [18]H. T. Chen and J. Y. Lin, “Analysis of two-dimensional hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, vol. 37, pp. 153-164, 1994.

    [19]J. Y. Lin and H. T. Chen, “Numerical solution of hyperbolic heat conduction in cylindrical and spherical systems,” Appl. Math. Modelling, vol. 18, pp. 384-390, 1994.

    [20]D. Frayce, R. E. Khayat, and A. Derdouri,“A dual reciprocity boundary element approach to three-dimensional transient materials processing,”Numer. Heat Transfer, Part A, vol. 29, pp, 243-264, 1996.

    [21]劉靜,王存誠,生物傳熱學,科學出版社,1997。

    [22]W. Q. Lu, J. Liu and Y. Zeng,“Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method,”Engineering Analysis with Boundary Elements, vol. 22, pp. 167-174, 1998.

    [23]盧基業,“二維非傅立葉熱傳問題之研究”,國立成功大學機械工程學系,碩士論文,1999。

    [24]王鴻儒,“以熱波理論探討生物組織的傳熱現象”, 國立成功大學機械工程學系,碩士論文,2000。

    [25]劉國基,“雙曲線型擴散問題之探討”,國立成功大學機械工程學系,博士論文,2002。

    [26]Q. M. Fan and W. Q. Lu, “A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium,” Int. J. Heat Mass Transfer, vol. 45, pp. 2815-2821, 2002.

    [27]C. S. Tsai, Y. C. Lin and C. I. Hung, “A study on the non-Fourier effects in spherical media due to sudden temperature changes on the surfaces,” Heat Mass Transfer, vol. 41, pp. 709-716, 2005.

    [28]T. M. Chen, “Numerical solution of hyperbolic heat conduction in thin surface layers,” Int. J. Heat Mass Transfer, vol. 50, pp. 4424-4429. 2007.

    [29]C. Y. Yang, “Direct and inverse solutions of the two-dimensional hyperbolic heat conduction problems,” Applied Mathematical Modelling, vol. 33, pp. 2907-2918, 2009.

    [30]T. M. Chen, “A hybrid Green’s function method for the hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, vol. 52, pp. 4273-4278, 2009.

    [31]K. C. Liu,“Thermal propagation analysis for living tissue with surface heating,”Int. J. Thermal Sciences, vol. 47, pp. 507-513, 2008.

    [32]S. Özen, S. Helhel and O. Cerezci,“Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT),”Burns, vol. 34, pp. 45-49, 2008.

    [33]K. C. Liu and H. T. Chen, “Analysis for the dual-phase-lag bio- heat transfer during magnetic hyperthermia treatment,” Int. J. Heat Transfer, vol. 52, pp. 1185-1192, 2009.

    [34]J. Zhou, Y. Zhang and J. K. Chen,“An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues,”Int. J. Thermal Sciences, vol. 48, pp. 1477-1485, 2009.

    下載圖示 校內:2012-07-28公開
    校外:2013-07-28公開
    QR CODE