| 研究生: |
施郁蕙 Shih, Yu-Hui |
|---|---|
| 論文名稱: |
一維Dirac-Klein-Gordon方程式解的存在唯一性 Existence and Uniqueness for Dirac-Klein-Gordon Equation in One Space Dimension |
| 指導教授: |
方永富
Fang, Yung-fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | Dirac-Klein-Gordon方程式 |
| 外文關鍵詞: | Dirac-Klein-Gordon Equation |
| 相關次數: | 點閱:105 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
none
The Cauchy problem for the Dirac-Klein-Gordon equations has attracted some attention in recent yeas. We shall prove that in one space dimension have local and global existences through a null form estimate and a fixed point argument. The proof depends on the null form estimate and some priori estimates.
[B] J. Bourgain, Invariant Measures for NLS in
Infinite Volume, Commun. Math. Phys. 210 (2000), 605--620.
[Ba] A. Bachelot, Global existence of large amplitude
solutions for Dirac-Klein-Gordon systems in Minkowski space, Lecture Notes in
Math. 1402 (1989), 99--113(Springer Berlin).
[Bo] N. Bournaveas, A new proof of global existence for the
Dirac-Klein-Gordon equations in one space dimension, J. Funct. Anal. 173
(2000), 203-213.
[C] J. Chadam, Global Solutions of the Cauchy Problem for the (Classical)
Coupled Maxwell-Dirac Equations in one Space Dimension, J. Funct. Anal.
13 (1973), 173-184.
[CG] J. Chadam and R. Glassey, On Certain Global Solutions of the
Cauchy Problem for the (Classical) Coupled Klein-Gordon-Dirac equations in one
and three Space Dimensions, Arch. Rational Mech. Anal. 54 (1974),
223-237.
[F1] Yung-fu Fang, Local Existence for Semilinear Wave Equations
and Applications to Yang-Mills Equations, Ph.D dissertation (1996) (University
of Maryland).
[F2] Yung-fu Fang, A Direct Proof of Global Existence for the Dirac-klein-Gordon
Equations in One Space Dimension (2004) Taiwanese Journal of Math.
[F3] Yung-fu Fang, Existence and Uniqueness for
Dirac-Klein-Gordon Equations in one Space Dimension (2002) (preprint)
[FG] Yung-fu Fang and Manoussos Grillakis, Existence and Uniquenss for Boussinesq type Equations on a
Circle, Comm. PDE 21 (1996), 1253-1277.
[G] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac
equations, Indiana Univ. Math. J. 40 (1991), 845-883.
[GS] R. Glassey and W. Strauss, Conservation laws for the classical
Maxwell-Dirac and Klein-Gordon-Dirac equations, J. Math. Phys. 20
(1979), 454-458.
[KM] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence
theorem, Comm. Pure Appl. Math. XLVI (1993), 1221-1268.
[Ku] Sergej Kuksin, Infinite-Dimensional Symplectic Capacities and
a Squeezing Theorem for Hamiltonian PDE's, Commun. Math. Phys 167
(1995), 531-552.
[Z] Y.Zheng, Reqularity of weak solutions to a two-dimensional
modified Dirac-Klein-Goedon system of equations, Commun. Math. Phys. 151
(1993), 67-87.