簡易檢索 / 詳目顯示

研究生: 施郁蕙
Shih, Yu-Hui
論文名稱: 一維Dirac-Klein-Gordon方程式解的存在唯一性
Existence and Uniqueness for Dirac-Klein-Gordon Equation in One Space Dimension
指導教授: 方永富
Fang, Yung-fu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 46
中文關鍵詞: Dirac-Klein-Gordon方程式
外文關鍵詞: Dirac-Klein-Gordon Equation
相關次數: 點閱:105下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

    The Cauchy problem for the Dirac-Klein-Gordon equations has attracted some attention in recent yeas. We shall prove that in one space dimension have local and global existences through a null form estimate and a fixed point argument. The proof depends on the null form estimate and some priori estimates.

    0 Introduction and Main Results. 1 1 Solution Representation. 2 2 Estimates. 8 3 Local and Global Existence. 22 4 Null Form Estimate. 27 References 46

    [B] J. Bourgain, Invariant Measures for NLS in
    Infinite Volume, Commun. Math. Phys. 210 (2000), 605--620.

    [Ba] A. Bachelot, Global existence of large amplitude
    solutions for Dirac-Klein-Gordon systems in Minkowski space, Lecture Notes in
    Math. 1402 (1989), 99--113(Springer Berlin).

    [Bo] N. Bournaveas, A new proof of global existence for the
    Dirac-Klein-Gordon equations in one space dimension, J. Funct. Anal. 173
    (2000), 203-213.

    [C] J. Chadam, Global Solutions of the Cauchy Problem for the (Classical)
    Coupled Maxwell-Dirac Equations in one Space Dimension, J. Funct. Anal.
    13 (1973), 173-184.

    [CG] J. Chadam and R. Glassey, On Certain Global Solutions of the
    Cauchy Problem for the (Classical) Coupled Klein-Gordon-Dirac equations in one
    and three Space Dimensions, Arch. Rational Mech. Anal. 54 (1974),
    223-237.

    [F1] Yung-fu Fang, Local Existence for Semilinear Wave Equations
    and Applications to Yang-Mills Equations, Ph.D dissertation (1996) (University
    of Maryland).

    [F2] Yung-fu Fang, A Direct Proof of Global Existence for the Dirac-klein-Gordon
    Equations in One Space Dimension (2004) Taiwanese Journal of Math.

    [F3] Yung-fu Fang, Existence and Uniqueness for
    Dirac-Klein-Gordon Equations in one Space Dimension (2002) (preprint)

    [FG] Yung-fu Fang and Manoussos Grillakis, Existence and Uniquenss for Boussinesq type Equations on a
    Circle, Comm. PDE 21 (1996), 1253-1277.

    [G] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac
    equations, Indiana Univ. Math. J. 40 (1991), 845-883.

    [GS] R. Glassey and W. Strauss, Conservation laws for the classical
    Maxwell-Dirac and Klein-Gordon-Dirac equations, J. Math. Phys. 20
    (1979), 454-458.

    [KM] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence
    theorem, Comm. Pure Appl. Math. XLVI (1993), 1221-1268.

    [Ku] Sergej Kuksin, Infinite-Dimensional Symplectic Capacities and
    a Squeezing Theorem for Hamiltonian PDE's, Commun. Math. Phys 167
    (1995), 531-552.

    [Z] Y.Zheng, Reqularity of weak solutions to a two-dimensional
    modified Dirac-Klein-Goedon system of equations, Commun. Math. Phys. 151
    (1993), 67-87.

    下載圖示 校內:2005-02-05公開
    校外:2005-02-05公開
    QR CODE