| 研究生: |
陳宗富 Chen, Tzong-Fu |
|---|---|
| 論文名稱: |
Al-Zn合金之共振破壞特性研究 A Study on the Vibration Fracture Characteristics of Al-Zn Alloys Under Resonance |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | Zn含量 、Al-Zn 合金 、冷卻速率 、共振破壞 |
| 外文關鍵詞: | Cooling Rates, Vibration Fracture, Al-Zn Alloys, Zn Contents |
| 相關次數: | 點閱:139 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長久以來Al-Zn合金被視為一種制振材料,考慮到進ㄧ步的實際應用,本研究進行組成及析出行為對Al-Zn合金共振破壞特性影響之探討。實驗材料為不同Zn含量之Al-Zn合金(Zn含量為7, 11, 49, 83wt%,分別以7Zn、11Zn、49Zn、83Zn表示),並藉由退火處理後冷卻速率的控制,以獲得水淬(WQ)、空冷(AC)、爐冷(FC)等不同析出狀態之試片。
實驗結果顯示,經WQ處理之不同Zn含量試片制振性大小順序為83Zn>7Zn>11Zn>49Zn。在固定出力值之共振測試條件下,雖然83Zn有較好之制振性,但是7Zn振動壽命較佳,49Zn之振動破壞阻抗則均為四者中最差。於固定起始偏移量條件之下振動壽命順序則為7Zn>11Zn>49Zn>83Zn。以上現象與Zn含量不同所導致之組織差異有關。當Zn含量為7至49wt%時,組織特徵為alpha-Al晶粒以及於晶粒及晶界上析出之富Zn相顆粒,制振機制推測為差排滑移。當提高Zn含量時晶粒及晶界上析出物量增加,分別導致差排滑移不易及沿晶破壞發生。當Zn含量為83wt%時,組織呈alpha-Al及beta-Zn相間之層狀共析形態。制振機制應為alpha及beta相間之相界滑移,其制振效果佳,裂縫傳播阻抗卻相當差。
以7Zn與83Zn試片進行冷卻速率效應調查結果顯示,兩組試片隨著冷卻速率之增加,制振性均隨之升高。且於固定出力值條件下,皆顯示WQ試片之共振壽命最好;於固定起始偏移量條件之振動壽命,7Zn與83Zn分別以WQ及AC試片最佳。以上現象與冷卻速率不同所導致之析出物量及分佈形態差異關係密切。
The Al-Zn alloy has been considered as a high damping material. For practical use, this study investigated the effects of Zn content and precipitation behavior on the vibration fracture characteristics of the Al-Zn alloy under resonance. Al-Zn alloys with different Zn contents were prepared and designated according to their Zn content. To achieve varying degree of precipitation, all the samples were annealed and cooled with various cooling rates to obtain the water-quenched (WQ), air-cooled (AC) and furnace-aged (FC) specimens.
Experimental results show that the damping capacity of the WQ samples with different Zn contents decreases in turn from 83Zn, 7Zn, 11Zn and to 49Zn. Under constant force conditions, although the 83Zn exhibits superior damping capacity, the 7Zn shows the greatest vibration life. In addition, the 49Zn sample has inferior vibration fracture resistance. As for constant initial deflection conditions, the vibration life in the decreasing order is 7Zn, 11Zn, 49Zn and then 83Zn. Differences in vibration properties of the samples with various Zn contents can be attributed to their microstructural characteristics. When the Zn content is raised from 7wt% to 49wt%, the microstructure of Al-Zn alloys consists of alpha-Al grains and the precipitates on the matrix or the grain boundaries. The mechanism for absorbing vibration energy could be considered as dislocation slip. A higher Zn content may result in more precipitates within Al grains or on the grain boundaries, consequently, dislocation is more difficult to slip and the intergranular fracture occurs. The 83Zn specimen shows a typical eutectoid structure of alternate alpha-Al and beta-Zn layers. The phase boundary sliding between alpha and beta can significantly dissipate vibration energy. However, this eutectoid structure possesses poor crack propagation resistance and thus inferior vibration life.
The 7Zn and 83Zn samples are chosen to examine the effect of cooling rate on vibration properties. Results show that for both 7Zn and 83Zn, a higher cooling rate will lead to a greater damping capacity and the WQ specimens possesses longer vibration life under constant force conditions. As for constant initial deflection conditions, the WQ samples of 7Zn and the AC of 83Zn exhibit better vibration fracture resistance. The amount and distribution of the precipitates influenced by cooling rate may account for those phenomena.
1.D. W. James, “High Damping Metals for Engineering Applications” Mat. Sci. Eng., 1969, vol. 4, no. 1, pp. 1-8.
2.I. G. Ritchie and Z. L. Pan, “High-Damping Metals and Alloys” Metall. Trans. A, 1991, vol. 22A, pp. 607-616.
3.H. Masumoto, M. Hinai, and S. Sawaya, “The Inluence of Cold-Working on the Damping Capacity of Al-Zn Alloys”, Trans. Jpn. Inst. Metals, 1983, vol. 24, pp. 681-688.
4.B. C. Moon, Z. H. Lee, “Damping Behavior of Al-Zn Alloys Produced by Spray Forming Process” Scripta Mater., 1998, vol. 38, no. 2, pp. 207-213.
5.K. Nuttall, “The Damping Characteristics of a Superplastic Zn-Al Eutectoid Alloy” J. Inst. Metals, 1971, vol. 99, pp. 266-270.
6.Y. Torisaka and S. Kojima, “Superplasticity and Internal Friction of A Superplastic Zn-22%Al Eutectoid Alloy” Acta Metall. Mater., 1991, vol. 39, no. 5, pp. 947-954.
7.Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company Inc., 1990, 2nd ed., pp. 4-160.
8.An Introduction to Mechanical Vibration, R. F. Stridel, Jr., John Wiley and Sons, Inc., New York, 1988, 3rd ed., pp. 96-226.
9.Dynamic Vibration Absorbers, Theory and Technical Application, B. G. Korenev and L. M. Reznikov, John Wiley and Sons, Inc., England, 1993, pp. 1-80.
10.Theory of Vibration, Volume II: Discrete and Continuous Systems, A. A. Shabana, Springer-Verlag, New York, 1991, pp. 1-40.
11.洪佳和,「亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討」,國立成功大學材料科學及工程學系,博士論文,民國90年。
12.振動與噪音的阻尼控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京,1992,38-57頁。
13.A. Granato and K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies” Journal of Applied Physics, 1956, vol. 27, no. 6, pp. 583-592.
14.A. Granato and K. Lucke, “Theory of Mechanical Damping due to Dislocations” Journal of Applied Physics, 1956, vol. 27, no. 7, pp. 789-805.
15.S. E. Urreta De Pereyra, H. Bertorello and A. A. Ghilarducca De Salva, “Precipitation and Grain Boundary Internal Friction Peaks in Al-Mg-Si”, Phys. Stat. Sol., 1988, vol. 108, pp. 577-586.
16.S. E. Urreta De Pereyra, A. A. Ghilarducca De Salva and F. Louchet, “Precipitation Internal Friction Peaks in Al-Mg-Si”, Phys. Stat. Sol., 1993, vol. 139, pp. 345-360.
17.E. Carreno-Morelli, S. E. Urreta De Pereyra and A. A. Ghilarducci De Salva, “High Temperature Damping in Al-Mg-Si Industrial Alloys”, Phys. Stat. Sol., 1996, vol. 158, pp. 449-462.
18.A. Dentsoras and A. D. Dimarogonas, “Resonance Contralled Fatigue Crack Propagation”, Eng. Fract. Mech., 1983, vol. 17, no. 4, pp. 381-386.
19.X. Zhu, “Stable Damping Associated with Linear Viscous Motion of the Interface in a Multiphase Al-Zn Alloy”, J. of Appl. Phys., 1990, vol. 67, pp. 7287-7291.
20.A. S. Nowick, “Anelastic Effects Arising from Precipitation in Aluminum-Zinc Alloys”, J. of Appl. Phys., 1951, vol. 22, no. 7, pp. 925-933.
21.I. G. Ritchie, Z. L. Pan and F. E. Goodwin, “Characterization of the Damping Properties of Die-Cast Zinc-Aluminum Alloy”, Metall. Trans. A, 1991, vol. 22A, pp. 617-622.
22.S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., 1993, vol. 8, pp. 2216-2223.
23.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metall. Trans. A, 1995, vol. 26A, pp. 1123-1127.
24.林士晴,「球狀石墨鑄鐵之振動破壞特性研究」,國立成功大學材料科學及工程學系,博士論文,民國90年。
25.Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, 1989, pp. 71-91.
26.Fatigue of Materials, S. Suresh, Cambridge University Press. New York, 1991, pp. 292.
27.J. J. Mason and R. O. Ritchie, “Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P/M 2124 Aluminum Matrix Composites”, Mater. Sci. Eng., 1997, vol. A231, pp. 170-187.
28.金屬實用二元合金狀態圖集,金屬發刊60年紀念,92/10特別臨時增刊號,72頁。
29.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 242-244.
30.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 101.
31.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 258.
32.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 186-188.
33.D. L. Douglass and T. W. Barbee, “Spinodal decomposition in Al/Zn alloys I - Mechanical properties” Journal of Materials Science, 1969, vol. 4, pp. 121-129.
34.R. C. Dorward, “On the Mechanical Properties of Al-40Pct Zn Alloys” Metallurgigal Transactions, 1970, vol. 1, pp. 2334-2336.
35.S. Krishnamurthy and S. P. Gupta, “Mechanical Properties of Thermally Cycled Al-40wt.%Zn Alloy Part Ⅱ”, Mater. Sci. Eng., 1977, vol. 30, pp. 167-174.
36.W. J. Kovavs and J. R. Low, JR, “Intergranular Fracture in an Al-15Wt Pct Zn Alloy”, Metall. Trans., 1971, vol. 2, pp. 3385-3400.
37.G. Kralik and H. Schneiderhan, “Fatigue Hardening of Al-4at%Zn Single Crystals” Scripta Metall., 1972, vol. 6, pp. 843-850.
38.N. Souami, M. Fagot, P. Chomel and J. P. Cottu, “Fatigue Particle Coarsening in Al-Zn Alloy” Scripta Metall., 1986, vol. 20, pp. 1673-1676.
39.R. G. Pahl, Jr. and J. B. Cohen, “Effect of Fatigue on the GP Zones in Al-Zn Alloys” Metall. Trans. A, 1984, vol. 15A, pp. 1519-1529.
40.M. C. Lu and S. Weissmann, “The Influence of Aging and Thermomechanical Treatments on the Fatigue Properties of an Al-6.5at%Zn Alloy” Mater. Sci. Eng., 1978, vol. 32, pp. 41-53.
41.R. Kroggel, H. Schierig, R. Schiffmann and P. Siebert, “Slip Bands in Quenched Al-Zn Alloys” Crystal Res. & Technol., 1985, vol. 20, no. 2, pp. 251-254.
42.P. Bartuska, J. Kratochvil and V. Sima, “Low Cycle Fatigue Cracking of Al 20wt% Zn Multicrystals” Czech. J. Phys., 1987, vol. B37, no. 5, pp. 619-624.
43.A. E. W. Smith and G. A. Hare, “Controlling the Zinc-Aluminium Eutectoid Reaction” J. Inst. Metals, 1973, vol. 101, pp. 320-328.
44.R. D. Garwood and A. D. Hopkins, “The Kinetics of the Eutectoid Transformation in Zinc-Aluminium Alloys” J. Inst. Metals, 1952-53, vol. 81, pp. 407-415.
45.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 361-362.
46.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 363-364.
47.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 252.
48.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 280.
49.Physical Metallurgy Principles, Robert E. Read-Hill and Reza Abbaschian, PWS Publishing Company, Boston, 1991, pp. 192-194.
50.Structure and Structure Development of Al-Zn Alloys, H. Loffler, Akad. Verl., 1995, 1st ed., pp. 163-164.
51.The Science and Engineering of Materials, Askeland and R. Donald, 1994, Third Edition, pp. 249.
52.The Science and Engineering of Materials, Askeland and R. Donald, 1994, Third Edition, pp. 383.
53.Micromechaniams in Particle-Hardened Alloys, J. W. Martin, Cambridge University Press, 1980, pp. 12-78.
54.J. Lindigkeit, G. Terlinde, A. Gysler and G. Lutjering, “The Effect of Grain Size on the Fatigue Crack Propagation Behavior of Aged-Hardened Alloys in Inert and Corrosive Environment”, Acta Metall. 1979, vol. 27, pp. 1717-1726.
55.G. Screm and F. Gatto, “Changes in Strain-dependent Internal Friction during Fatigue (of Al-Alloys)”, Mater. Sci. Eng., 1975, vol.18, pp. 75-80.