| 研究生: |
林盈秀 Lin, Ying-Shiu |
|---|---|
| 論文名稱: |
藉由DP4A接合金奈米粒子提高其對fibronectin的親和力以抑制腫瘤肺轉移的能力 Inhibition of lung metastasis by DP4A-nanogold complex via enhanced affinity to fibronectin |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 第四型雙肽蛋白水解酶 、金奈米粒子 、腫瘤轉移 |
| 外文關鍵詞: | DPPⅣ, nanogold, metastasis |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米粒子因具有特別的物理及化學特性,在專一性的標靶治療之藥物運送中扮演了重要的角色。複合上生物性的抗原或抗體、光學感應器、疾病或癌症治療的藥物的金奈米複合物被廣泛的應用在生物體上。肺臟微血管內皮細胞上的 Dipeptidyl peptidase IV (DPP IV) 和癌細胞表面組裝的纖連蛋白 fibronectin (FN) matrix 兩者之間的結合,在癌症肺臟轉移的過程中扮演重要的角色。研究指出,DPP IV 的片段蛋白,DP4A,是主要與 FN 結合的區域並且具有潛力阻斷因 DPP IV 和 FN 作用而造成的癌症轉移現象。基於 DP4A 的特異性,我們利用金奈米粒子作為載體,製備出 DP4A 複合的金奈米粒子 DP4A-AuNP 複合物,並且探討此材料之特性及其在 in vitro 及 in vivo 中所帶來的影響。首先,在探討 DP4A 在與金奈米粒子複合前後差異的過程中,我們發現 DP4A-AuNP 複合物與 FN 的 Kd 值 (解離常數) 比起相同劑量下 free DP4A 與 FN 的 Kd 值約有九倍的差異,顯示 DP4A 複合金奈米粒子之後對於 FN 的親和力大幅的提升,同時我們也透過 DPP IV binding assay 進一步證實 DP4A-AuNP 複合物的確具有較好的能力去阻斷 DPP IV 與 FN 之間的結合。In vitro,利用 4T1 及 LL2 兩株具有肺臟轉移能力的癌細胞進行細胞黏附實驗發現 DP4A-AuNP 複合物相較於 free DP4A 可以更有效的降低細胞黏附能力。In vivo 方面,我們發現 DP4A-AuNP 複合物也有明顯抑制癌細胞肺臟轉移的效果。綜合以上實驗結果,我們發現將 DP4A 複合上金奈米材料之後,不僅在 in vitro 可以有效的提高對於 FN 的親和力並降低癌細胞的黏附能力,另外,在 in vitro 方面 DP4A-AuNP 複合物也同時具有抑制癌細胞肺臟轉移的效果。這樣的金奈米複合材料可望在未來進一步攜帶藥物並專一性針對癌細胞作用,進而達到抑制癌症轉移的目的。
Gold nanoparticles (AuNPs) have been extensively used as agents of target-specific delivery therapy due to their unique chemical and physical properties for transporting and loading the pharmaceutics, especially when conjugated with biological ligands or antibody, optical sensing, and therapeutic drugs for various diseases. In lung metastasis, the blood-borne cancer cells become arrested in the lung vasculature via the adhesion between DPP IV and pericellular polymetric fibronectin (polyFN). Further studies indicated that the portion of the DPP IV, named DP4A, is the major FN-binding domain and has the potential to block DPP IV/FN-mediated adhesion and metastasis. According to the specificity of DP4A, we developed a novel form of DP4A that is bound to a carrier in the nanometer scale and further examined its properties in vitro and in vivo. After conjugating DP4A with AuNPs, this complex had approximately nine-fold Kd value lower than free DP4A and also blocked the binding between DPP IV and FN. In vitro, cell adhesion assay showed that DP4A-AuNP complex had higher suppressive effects on cell adhesion in both 4T1 and LL2 cells than free DP4A. In vivo, DP4A-AuNP complex also enhanced the inhibitory effect of DP4A on lung metastasis. In conclusion, our results demonstrate that utilizing nanomaterial as a carrier to conjugate proteins appears to enhance their biological functions. The DP4A-AuNP complex is expected to carry drugs and specifically target cancer cells as a strategy to prevent cancer metastasis.
Abe,Y., Bui-Thanh,N.A., Ballantyne,C.M., and Burns,A.R. (2005). Extra domain A and type III connecting segment of fibronectin in assembly and cleavage. Biochem. Biophys. Res. Commun. 338, 1640-1647.
Ajami,K., Abbott,C.A., Obradovic,M., Gysbers,V., Kahne,T., McCaughan,G.W., and Gorrell,M.D. (2003). Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry 42, 694-701.
Aytac,U. and Dang,N.H. (2004). CD26/dipeptidyl peptidase IV: a regulator of immune function and a potential molecular target for therapy. Curr. Drug Targets. Immune. Endocr. Metabol. Disord. 4, 11-18.
Boisselier,E. and Astruc,D. (2009b). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759-1782.
Boisselier,E. and Astruc,D. (2009a). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759-1782.
Buhling,F., Kunz,D., Reinhold,D., Ulmer,A.J., Ernst,M., Flad,H.D., and Ansorge,S. (1994). Expression and functional role of dipeptidyl peptidase IV (CD26) on human natural killer cells. Nat. Immun. 13, 270-279.
Cheng,H.C., bdel-Ghany,M., Elble,R.C., and Pauli,B.U. (1998). Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J. Biol. Chem. 273, 24207-24215.
Cheng,H.C., bdel-Ghany,M., and Pauli,B.U. (2003). A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J. Biol. Chem. 278, 24600-24607.
Chithrani,B.D. and Chan,W.C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano. Lett. 7, 1542-1550.
Cunningham,D.F. and O'Connor,B. (1997). Proline specific peptidases. Biochim. Biophys. Acta 1343, 160-186.
Engel,M., Hoffmann,T., Wagner,L., Wermann,M., Heiser,U., Kiefersauer,R., Huber,R., Bode,W., Demuth,H.U., and Brandstetter,H. (2003). The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc. Natl. Acad. Sci. U. S. A 100, 5063-5068.
Fernando,L.P., Kandel,P.K., Yu,J., McNeill,J., Ackroyd,P.C., and Christensen,K.A. (2010). Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules. 11, 2675-2682.
Fidler,I.J. (2002). The organ microenvironment and cancer metastasis. Differentiation 70, 498-505.
Gestwicki,J.E., Cairo,C.W., Strong,L.E., Oetjen,K.A., and Kiessling,L.L. (2002). Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922-14933.
Gorrell,M.D. (2005). Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin. Sci. (Lond) 108, 277-292.
Han,S., Khuri,F.R., and Roman,J. (2006). Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res. 66, 315-323.
Hanski,C., Huhle,T., Gossrau,R., and Reutter,W. (1988). Direct evidence for the binding of rat liver DPP IV to collagen in vitro. Exp. Cell Res. 178, 64-72.
Harris,A.L. (2002). Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38-47.
Hartel,S., Gossrau,R., Hanski,C., and Reutter,W. (1988). Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry 89, 151-161.
Ichikawa,Y., Ishikawa,T., Tanaka,K., Togo,S., and Shimada,H. (2001). [Extracellular matrix degradation enzymes: important factors in liver metastasis of colorectal cancer and good targets for anticancer metastatic therapy]. Nippon Geka Gakkai Zasshi 102, 376-380.
Jiang,W., Kim,B.Y., Rutka,J.T., and Chan,W.C. (2008). Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145-150.
Kapust,R.B. and Waugh,D.S. (1999). Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668-1674.
Kimling,J., Maier,M., Okenve,B., Kotaidis,V., Ballot,H., and Plech,A. (2006). Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700-15707.
Lambeir,A.M., Durinx,C., Proost,P., Van,D.J., Scharpe,S., and De,M., I (2001). Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett. 507, 327-330.
Lloyd,C. (1979). Fibronectin: a function at the junction. Nature 279, 473-474.
Marguet,D., Baggio,L., Kobayashi,T., Bernard,A.M., Pierres,M., Nielsen,P.F., Ribel,U., Watanabe,T., Drucker,D.J., and Wagtmann,N. (2000). Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci. U. S. A 97, 6874-6879.
Marrink,J., vd,G.S., Sinnema,R., Vellenga,E., and de Vries,E.G. (1985). Fibronectin-complex (FN-C) present in normal plasma. Thromb. Res. 37, 689-692.
Montet,X., Funovics,M., Montet-Abou,K., Weissleder,R., and Josephson,L. (2006). Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49, 6087-6093.
Osaki,F., Kanamori,T., Sando,S., Sera,T., and Aoyama,Y. (2004). A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520-6521.
Pacheco,R., Martinez-Navio,J.M., Lejeune,M., Climent,N., Oliva,H., Gatell,J.M., Gallart,T., Mallol,J., Lluis,C., and Franco,R. (2005). CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc. Natl. Acad. Sci. U. S. A 102, 9583-9588.
Peer,D., Karp,J.M., Hong,S., Farokhzad,O.C., Margalit,R., and Langer,R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751-760.
Pupa,S.M., Menard,S., Forti,S., and Tagliabue,E. (2002). New insights into the role of extracellular matrix during tumor onset and progression. J. Cell Physiol 192, 259-267.
Rosenblum,J.S. and Kozarich,J.W. (2003). Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr. Opin. Chem. Biol. 7, 496-504.
Ruoslahti,E. (1988). Fibronectin and its receptors. Annu. Rev. Biochem. 57, 375-413.
Salvatore,T., Carbonara,O., Cozzolino,D., Torella,R., and Sasso,F.C. (2009). Progress in the oral treatment of type 2 diabetes: update on DPP-IV inhibitors. Curr. Diabetes Rev. 5, 92-101.
Sharma,A., Askari,J.A., Humphries,M.J., Jones,E.Y., and Stuart,D.I. (1999). Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J. 18, 1468-1479.
Shi,X., Wang,S.H., Van Antwerp,M.E., Chen,X., and Baker,J.R., Jr. (2009). Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 134, 1373-1379.
Sottile,J. and Chandler,J. (2005). Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol. Biol. Cell 16, 757-768.
Stagg,J., Johnstone,R.W., and Smyth,M.J. (2007). From cancer immunosurveillance to cancer immunotherapy. Immunol. Rev. 220, 82-101.
Virtanen,I., Vartio,T., Badley,R.A., and Lehto,V.P. (1982). Fibronectin in adhesion, spreading and cytoskeletal organization of cultured fibroblasts. Nature 298, 660-663.
Wang,S.H., Lee,C.W., Chiou,A., and Wei,P.K. (2010). Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J. Nanobiotechnology. 8, 33.
Wernert,N. (1997). The multiple roles of tumour stroma. Virchows Arch. 430, 433-443.
Wesley,U.V., Albino,A.P., Tiwari,S., and Houghton,A.N. (1999). A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J. Exp. Med. 190, 311-322.
Wierzbicka-Patynowski,I. and Schwarzbauer,J.E. (2003). The ins and outs of fibronectin matrix assembly. J. Cell Sci. 116, 3269-3276.
Wyckoff,J.B., Jones,J.G., Condeelis,J.S., and Segall,J.E. (2000). A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60, 2504-2511.
洪婷婷 (2007)。定位大鼠第四型雙肽蛋白水解酶其細胞外區域中之纖連蛋白基質及單株抗體6A3的結合位點。國立成功大學碩士論文。
劉如芳 (2009)。一段DPP Ⅳ 胜肽結合到轉移性癌細胞表面上之Fibronectin Matrix 的後果。國立成功大學碩士論文。
校內:2021-12-31公開