簡易檢索 / 詳目顯示

研究生: 張嘉庭
Chang, Chia-Ting
論文名稱: 熱處理對熱均壓Inconel 718超合金之顯微結構及機械性質研究
The Investigation on the Heat Treatment of Microstructure and Mechanical Properties of Hot Isostatically Pressed Inconel 718 Superalloy.
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 抗拉強度熱均壓時效處理固溶處理Inconel 718
外文關鍵詞: Hot Isostatic Pressinng, Solution treatment, Inconel 718 superaloy, Aging treatment, Ultimate tensile strength
相關次數: 點閱:157下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱均壓(Hot Isostatic Pressing, HIP)技術已廣泛應用於鑄造工業以去除鑄造過程中所產生之內部孔隙,其結合了高溫及高壓方式以提供材料較佳的性質,並能改善鑄造材料的強度、延展性與疲勞壽命。Inconel 718是使用在航太工業上最多的超合金材料,同時具有高溫優越的抗腐蝕性、強度、潛變及疲勞等性質。
    不同的熱處理形成不同的顯微結構,不當的熱處理處理將造成有害相的析出,降低Inconel 718的機械性質。本研究探討在經過熱均壓製程後,後續固溶熱處理溫度以及時效熱處理時間兩個參數,求得最佳參數。
    在研究中發現,晶界上Laves相及δ相的析出,將造成機械性質的下降。固溶處理溫度1020 oC持溫1小時後完全固溶Laves相及δ相,其抗拉強度為1331.5 MPa;固溶處理溫度1060 oC持溫1小時將使NbC部份固溶,而於時效處理時以薄膜狀析出,強度降低為1298.8 MPa。因此最佳固溶處理參數為1020 oC持溫1小時。
    經過不同時效時間處理,γ〞於720 oC持溫8小時降溫至620 oC持溫4小時尺寸為30.41 nm,為尖峰時效(peak aging),具有最大強度1407.2 MPa。此外若以達到鑄造超合金最低標準,在商業上時效處理以720 oC持溫2小時降溫至620 oC持溫8小時為最佳參數,抗拉強度為1185.4 MPa。

    Hot Isostatic Pressinng (HIP) is widely used in the casting industry to remove the internal porosity generated during the casting process. It combines higher pressure and temperature to produce materials and parts with substan- tially better properties than other methods. These results in the improved strength, ductility and fatigue life of castings. Inconel 718 is the most widely used superalloys for aerospace applications. The Inconel 718 niclkel-base superalloy has decent corrosion resistance high of temperature and ambient temperature, and excellent creep and fatigue strengths at high temperature.
    However, the unsuitable heat treatments will give to the precipitation of detrimental phases.
    The aim of this paper is to discuss the heat treatment, including solution temperature and aging heat treatment time paramters after HIP process, and ultimately to reach proper microstructural control and mechanical properties.
    Experimental results show that the reduced mechanical strength of Inconel 718 is due to Laves and δ phases on the grain boundary. The Laves and δ phases dissolve completely in the 1020oC, 1hr solution treated condition, and show the ultimate tensile strength (UTS) of 1331.5 MPa. NbC carbides dissolve partly under 1060oC, 1hr solution treatment, will precipitate with thin film shapes after aging treatment, and the UTS reduces to 1298.8 MPa.The optimized solution treatment condition is 1020oC, 1hr.
    γ〞has the diameter of 30.41 nm under the double aging at 720oC, 8hrs and furnace cooling to 620oC followed by 620oC, 4hrs and air cooling. It shows the largest UTS of 1407.2 MPa, will be a peakaging theatment. Besides if the purpose of the UTS is to reach the casting superalloy basic standards, the commercial treatment of aging treatment is 720oC, 2hrs and furnace cooling to 620oC followed by 620oC, 8hrs and air cooling, show the UTS of 1185.4 MPa.

    摘要 I Abstract III 目錄 V 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 文獻回顧 2 2.1 熱均壓技術 2 2.1.1 熱均壓原理 2 2.1.2 熱均壓去除孔隙過程 3 2.1.3 熱均壓構造 4 2.1.4 熱均壓影響因素 5 2.1.5 熱均壓參數設定 6 2.2 鎳基超合金 7 2.2.1 鎳基超合金顯微結構 8 2.2.2 鎳基超合金組成元素 11 2.2.3 鎳基超合金之強化機構 13 2.3 Inconel 718 超合金之熱處理 14 第三章 實驗方法 26 3.1 試片製作 27 3.2 熱均壓製程 28 3.3 熱處理製程 28 3.3.1 固溶熱處理 28 3.3.2 時效熱處理 28 3.4 微組織分析 29 3.4.1 光學顯微金相觀察 (Optical Microscopy) 29 3.4.2 表面電子顯微鏡觀察 (Surface Elctron Microscopy) 29 3.4.3 X光繞射分析儀 (X-ray Diffraction) 29 3.4.4 電子微探儀(Electron Probe X-ray MicroAnalyzer, EPMA) 30 3.4.5 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 30 3.5 機械性質量測 30 3.5.1 孔隙率量測 30 3.5.2 微硬度分析 (Micro-hardness testing) 32 3.5.3 拉伸試驗 32 3.5.4 破斷面觀察 32 第四章 結果與討論 37 4.1 固溶熱處理溫度參數探討 38 4.1.1 僅做固溶熱處裡 38 4.1.1.1 金相, OM 38 4.1.1.2 顯微結構, SEM 38 4.1.1.3 晶體結構, XRD 41 4.1.1.4 EPMA 44 4.1.1.5 微硬度 44 4.1.2 不同固溶熱處理加上雙段時效熱處理 46 4.1.2.1 顯微結構, SEM 46 4.1.2.2 微硬度 48 4.1.2.3 拉伸試驗 48 4.1.2.4 破斷面觀察 49 4.1.3 結論 50 4.2 固溶處理溫度1020 oC加上不同時效熱處理 50 4.2.1 微硬度 51 4.2.2 SEM 51 4.2.3 TEM 53 4.2.4 拉伸試驗 53 第五章 結論 100 第六章 文獻 101 誌謝 109

    1.C. P. Sullivan, “Microstructures and Mechanical Properties of Iron-Base Superalloys”, Metals Engineering Quarterly, pp.1-117, (1971).
    2.C. Barre, “Hot Isostatic Pressing : Saving Time and Money”, The International Journal of Powder Metallurgy, Vol.35, pp.51-52, (1999).
    3.Materials Handbook Ninth Edition Volume 7 Powder Metallurgy, “Hot Isostatic Pressing of Metal Powders”, American Society for Metals, pp.419-443, (1984).
    4.G. Appa Rao, Mahendra Kumar, M. Srinivas, D. S. Sarma, “Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718”, Materials Science and Engineering A, Vol.355, pp.114-125, (2003).
    5.G. Appa Rao, M. Srinivas, D. S. Sarma, “Influence of Modified Processing on Structure and Properties of Hot Isostatically Pressed Superalloy Inconel 718”, Materials Science and Engineering A, Vol.418, pp.282-291, (2006).
    6.W. D. Klopp, Aerospace Structural Metals Handbook, Ni-4100, January, (1995).
    7.張世賢, “Inconel 718 與 713LC 超合金熱均壓製程參數及特性研究”, 國立成功大學博士論文, (2006).
    8.Charlie R. Brooks, “Heat Treatment, Sructure and Properties of Nonferrous Alloys”, (1982).
    9.D. Fournter, A. Pineau, “Low Cycle Fatigue Behavior of Inconel 718 at 298K and 823K”, Metallurgical Transaction A, Vol.8, pp.1095-1105, (1977).
    10.M. Sundararaman, P. Mukhopadhray, S. Banerjee, “Some Aspects of the Precipitation of Metastable Intermetallic Phase in Inconel 718”, Metallurgical Transaction A, Vol.23, pp.2015-2028, (1992).
    11.C. Slama, M. Abdellaoui, “Structual Characterization of the Aged Inconel 718”, Journal of Alloys and Compounds, Vol.306, pp.277-284, (2000).
    12.F. W. Gossler, “High-Speed Machining of Aircraft Engine Alloys”, Proc. International Conference on High producitivity Machining Materials and Processing, pp.57-67, (1985).
    13.C. H. White, Nickel Base Alloys, Wiggin Alloy.
    14.R. Cozar, A. Pineau, “Morphoology ofγ′amdγ〞Precipitates and Thermal Stability of Inconel 718 Type Alloys”, Metallurgical Transaction A , Vol.4, pp.47-59, (1973).
    15.Saied Azadian, ”Delta Phase Precipitation in Inconel 718”, Materials Characterization, Vol.53, pp.7-16, (2004).
    16.S. Azadian, L. Y. Wei, F. Niklasson, R. Warren, “Precipitation in Spray-formed IN718”, Minerals, Metals and Materials Society, pp.617-626, (2001).
    17.C. T. Sims, W. C. Hagel, “The Superalloys”, Wiley, New York, (1972).
    18.B. Radhakrishnan, R. G. Thompson, “A Phase Diagram Approach to Study Liquation Cracking in Alloy 718”, Metallurgical Transaction A, Vol.22, pp.887-902, (1991).
    19.R. G. Thompson , D. E. Mayo, B. Radhakrishnan, “The Relationship between Carbon Content, Microstructure, and Intergranular Liquation Cracking in Cast Nickel Alloy 718”, Metallurgical Transaction A, Vol.22, pp.557-567, (1991).
    20.M. J. Cieslak, T. J. Headley, G. A. Knorovsky, A. D. Romig, Jr., T. Kollie, “A Comparison of the Solidification Behavior of Incoloy 909 and Inconel 718,”, Metallurgical Transaction A, Vol.21, pp.479-488, (1990).
    21.L. Nastac, D. M. Stefanescu, “Macrotransport-Solidification Kinetics Modeling of Equiaxed Dendric Growth: Part II. Computation Problems and Validation on Inconel 718 Superalloy Castings”, Metallurgical Transaction A, Vol.27, pp.4075-4083, (1996).
    22.E. O. Ezugwu, Z. M. Wang, A. R. Machado, “The Machinability of Nickel-based Alloys : A Review”, Journal of Materials Procseeing Technology, Vol.86, pp.1-16, (1999).
    23.S. H. Fu, J. X. Dong, M. C. Zhang, X. S. Xie, “Alloy Design and Development of Inconel 718 Type Alloy”, Materials Science and Engineering A, Vol.499, pp.215-220, (2009).
    24.P. K. Rastogi, A. J. Ardell, “The Coarsening Behavior of the Precipitate in Nickel-Silicon Alloys”, Acta Metallurgica, Vol.19, pp.321-330, (1971).
    25.Metals Handbook Desk Edition, ASM International, pp.971, 963.
    26.A. Thomas, M. El-Wahabi, J. M. Cabrera, J. M. Prado, “High Temperature Deformation of Inconel 718 ”, Journal of Materials Processing Technology, Vol.177, pp.469-472, (2006).
    27.K. Sivaprasad, S. Ganesh Sundara Raman, “Influence of Weld Cooling Rate on Microstructure and Mechanical Properties of Alloy 718 Weldments”, Metallurgical and Materials Transactions A, Vol.39, pp.2115-2127, (2008).
    28.W. Chen, M. C. Chaturvedi, “Dependence of Creep Fracture of Inconel 718 in Grain Boundary Precipitates”, Acta Materials, Vol.45, pp.2735-2746, (1996).
    29.M. K. Miller, S. S. Babu, M. G. Burke, “Intergranular Precipitation in Alloy 718”, Materials Science and Engineering A, Vol.270, pp.14-18, (1999).
    30.Dheepa Srinivasan, “Effect of Long-Time Exposure on the Evoltion of Minor Phase in Alloy 718”, Materials Science and Engineering A, Vol.364, pp.27-34, (2004).
    31.K. V. U. Praveen, Vakil Singh, “Effect of Heat Treatment on Coffin-Manson Relationship in LCF of Superalloy IN718”m Materials Science and Engineering A, Vol.485, pp.352-358, (2008).
    32.M. Sundararaman, P. Mukhopadhyay, S. Banerjee, “Some Aspects of the Presioitation of Metastable Intermetallic Phase in Inconel 718”, Metallurgical Transaction A, Vol.23A, pp.2015-2028, (1992).
    33.I. M. Lifshitz, V. V. Slyozov, “The Kinetics of Precipitation from Supersaturated Solid Solutions”, Journal of Physics and Chemistry of Solids, Vol.19, pp.35-50, (1961).
    34.Dong Jianxin, Xie Xishan, Zhang Shouhua, “Coarsening Behavior of γ〞Precipitates in Modified Inocnel 718 Superalloy”, Scipta Metallurgica et Materialia, Vol.33, pp.1933-1940, (1995).
    35.Dayong Cai, Weihong Zhang, Pulin Nie, Wenchang Liu, Mei Yao, “Dissolution Kinetics of δ Phase and its Influence on the Notch Sensitivity of Inconel 718”, Vol.58, pp.220-225, (2007).
    36.W. C. Liu, F. R. Xiao, M. Yao, “Relationship Between the Lattice Constant of γ Phase and the Content of δ Phase, γ〞and γ′ Phase in Inconel 718”, Scripta Materialia, Vol.37, pp.59-64, (1997).
    37.H. F. Merrick, “Effect of Heat Treatment on the Structure and Properties of Extruded P/M Alloy 718”, Metallurgical Transactions A, Vol.74, pp.505-514, (1976).
    38.Metallographic Etching : Techniques for Metallography, Ceramography, Plastography, Materials Park, OH :ASM International, (1999).
    39.C. A. Huang, T. H. Wang, C. H. Lee, W. C. Han, “A Study of the Heat-Affected Zone (HAZ) of an Inconel 718 Sheet Welded with Electron-Beam Welding (EBW)”, Materials Science and Engineering A, Vol.398, pp.275-281, (2005)
    40.C. I. Garcia, G. D. Wang, D. E, Camus, “Superalloys 718, 625, 706 and Various Derivatives”, Minerals, Metals and Materials Society, E. A. Loria, pp.293, (1994).
    41.D. Zhao, P. K. Chaudhury, “Superalloy 718, 625, 706 and Various Derivatives”, Minerals, Metals and Materials Society,”pp.303, (1994).
    42.T. S. Byun, K. Farrell, “Tensile Properties of Inconel 718 after Low Temperature Neutron Irradiation”, Journal of Nuclear Materials, Vol.318, pp.292-299, (2003).
    43.李世欽, 張世賢, 何信弘, “熱均壓製程溫度對Inconel 718超合金性質之影響”, 粉末冶金會刊第29卷第4期, pp.278-287, (2004).
    44.J. F. Barker, “A Superalloy for Medium Temperature”, Metal Process, Vol.5, pp.72-75, (1962).
    45.G. D. Janaki Ram, A. Venugopal Reddy, K. Prasad Rao, G. Madhusudhan Reddy, “Microstructure and Mechanical Properties of Inconel 718 Electron Beam Welds”, Materials Science and Technology, Vol.21, pp.1132-1138, (2005).
    46.H. Yuan, W. C. Liu, “Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718”, Materials Science and Engineering A, Vol.408, pp.281-289, (2005).
    47.Cai Da-yong, Zhang Wei-hong, Liu Wen-chang, Yao Mei, Sun Gui-dong, Chen Zong-lin, Wang Shao-gang, Gao Yu-kui, “Dissolution Behavior of Phaseδ in Inconel 718”, Journal of Iron and Steel Researrch, Vol.14, pp.61-64, (2002).
    48.K. Lucke, G. Abbruzzese, I. Heckelmann, “Statistical Theory of 2-D Grain Growth Based on First Principles and its TopologicalFoundation”, Materials Science Forum, Vol.94, pp.1-16, (1992).
    49.Underwood EE. Quantitative Stereology. Reading, USA: Addison -Wesley, (1970).
    50.W. S. Hou, H. T. Lee, C. C. Tsai, Y. L. Liu, “Influence of Delta Phase Formation on Static Recrystallization on Inconel 718”, 2008金屬熱處理年會.
    51.洪榆勝, “HIP製程對鑄造超合金Inconel 718之機械性質影響”, 國立成功大學碩士論文, (2005).
    52.Hiroaki Okamoto, P. R. Subramanian, Linda Kacprzak, “Binary alloy phase diagrams”, (1990).
    53.Fernando Pedraza, “Low Energy-High Flux Nitridation of Metal Alloys: Mechanisms , Microstructure and High Temperature Oxidation Behavior”, Materials and Technology, Vol.42, pp.157-169, (2008).
    54.D. L. Williamson, J. A. Davis, P. J. Wilbur, “Effect of Austenitic Stainless Steel Composition on Low-Energy, High-Flux, Nitrogen Ion Beam Processing”, Surface and Coatings Technology, Vol.103-104, pp.178-184, (1998).
    55.Liu Wenchang, Xiao Furen, Yao Mei, Chen Zonglin, Wang Shaigang, Li Weihong, “Quantitative Phase Analysis of Inconel 718 by X-ray Diffraction”, Journal of Materials Science Letters, Vol.16, pp.769-771, (1997).
    56.M. Sundararaman, P. Mukhopadhyay, S. Banerjee, “Precipitation of the δ-Ni3Nb Phase in Two Nickel Base Superalloys”, Metallurgical Transactions A, Vol.19, pp.453-465, (1988).
    57.Ming Gao, Robert P. Wei, “Grain Boundary Niobium Carbides in Inconel 718”, Scripta Materialia, Vol.37, pp.1843-1849, (1997).
    58.J. He, G. Han, S. Fukuyama, K. Yokogawa, “Interface in a Modified Inconel 718 with Compact Precipitates”, Acta Materials, Vol.46, pp.215-223, (1998).
    59.C. A. Stubbington, P. J. Forsyth, “Some Observations on Microstructural Damage Produced by Fatigue of an Aluminium- 7.5%Zinc- 2.5%Magnesium Alloy at temperatures between Room Temperature and 250 oC”, Acta Metallurgica, Vol.14, pp.5-12, (1996).
    60.G. Muralidharan, R. G. Thompson, “Effect of Second Phase Precipitation on Limiting Grain Growth in Alloy 718”, Scripta Materialia, Vol.36, pp.755-761, (1997).
    61.D. Steiner, R. Beddoe, V. Gerold, G. Kostorz, R. Schmelczer, “Particle Dissolution during fatigue of Age Hardened Cu-Co Single Crystals”, Scipta Metallurgica, Vol.17, pp.733-736, (1983).
    62.C. Calabrese, C. Laird, “Cyclic Stress-Strain Response of Two-Phase Alloys Part I. Microstructure Containing Particles Penetrable by Dislocations”, Materials Science and Engineering, Vol.13, pp.141-159, (1974).
    63.R. E. Stoltz, A. G. Pineau, “Dislocation-Precipitate Interaction and Cyclic Stress-Strain Behavior of a γ′Strengthened Superalloy”, Materials Science and Engineering, Vol.34, pp.275-284, (1978).
    64.M. Sundararaman, W. Chen, V. Singh, R. P. Wahi, “TEM Investigation ofγ′Free Bands in Nimonic PE16 under LCF Loading at Room Temperature”, Acta Metallurgica et Materialia, Vol.38, pp.1813-1822, (1990).
    65.B. Lerch, V, Gerold, “Room Temperature Deformation Mechanisms in Nimonic 80A”, Acta Metallurgica, Vol.33, pp.1709-1716, (1985).
    66.Linfa Liu, Katsumi Tanaka, Akio Hirose, Kojiro F. Kobayashi, “Effect of precipitation Phases on the Hydrogen Embrittlement Sensitivity of Inconel 718”, Science and Technology of Advanced Materials, Vol.3, pp.335-344, (2002).
    67.P. D. Hicks, C. J. Altstetter, “Internal Hydrogen Effects on Tensile Properties of Iron and Nickel-Base Superalloys”, Metallurgical Transactions A , Vol.21, pp.365-372, (1990).
    68.P. D. Hicks, C. J. Altstetter, “Hydrogen-Enhanced Cracking of Superalloys”, Metallurgical Transactions A, Vol.23, pp.237-249, (1992).
    69.G. A. Osinkolu, G. Onofrio, M. Marchionni, “Fatigue Crack Growth in Polycrystalline In718 Superalloys”, “Materials Science and Engineering A”, Vol.356, pp.425-433, (2003).
    70.M. Sundararaman, R. Kishore, P. Mukhopadhyay, “Strain Hardening in Underaged Inconel 718”, Metallurgical Transactions A, Vol.25, pp.653-656, (1994).
    71.“Aerospace Material Specifcation for Inconel 718(UNS NO7718)Sheets, Strips and Plates”, AMS 5596E, Society for Automotive Engineers. Warrendale, PA, (1984).
    72.M. G. Burke, M. K. Miller, “Superalloy 718 625 and Various Derivatives”, eds. E. A. Loria, TMS, pp.535, (1991).
    73.R. B. Li, M. Yao, W. C. Liu, X. C. He, “Isolation and Determination forδ, γ′andγ〞phases in Inconel 718 Alloy”, Scripta Materialia, Vol.46, pp.635-638, (2002).
    74.W. C. Liu, F. R. Xiao, M. Yao, H. Yuan, “Influence of Cold Rolling on the Precipitation Kinetics ofγ〞and δ phases in Inconel 718 Alloy”, Journal of Materials Science Letters, Vol.17, pp.245-247, (1998).
    75.Y. Nakada, A. S. Keh, “Serrated flow on Ni-c Alloys”, Acta Metallurgica , Vol.18, pp.437, (1970).
    76.J. He, S. Fukuyama, K. Yokogawa, A. Kimura, “Effect of Hydrogen on Deformation Structure of Inconel 718”, Materials Transactions, Vol.35, pp.689, (1994).

    下載圖示 校內:2010-07-31公開
    校外:2010-07-31公開
    QR CODE