| 研究生: |
謝明勳 Hsieh, Ming-Hsun |
|---|---|
| 論文名稱: |
(Sb1-xSnx)2Se3與Cu2FeSnSe4奈米晶液相合成及其光學性質研究 Solution-phase synthesis and opitical properties of (Sb1-xSnx)2Se3 and Cu2FeSnSe4 nanocrystals |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | (Sb1-xSnx)2Se3 、Cu2FeSnSe4奈米晶 、能隙調控 、單一反應系統 、溼式化學合成法 、高壓釜 |
| 外文關鍵詞: | (Sb1-xSnx)2Se3, Cu2FeSnSe4 nanocrystals, one-pot system, wet chemical synthesis, autoclave |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中探討以不同溶熱法分別合成(Sb1-xSnx)2Se3(x = 0.0, 0.1, 0.2, 0.3)以及Cu2FeSnSe4 (CFTSe)奈米晶之相生成及其光學性質。使用高壓釜於190℃反應,純相Sb2Se3奈米棒於12小時下生成,然而純相(Sb1-xSnx)2Se3奈米棒需於更長反應時間24-36小時才能生成,顯示Sn的摻雜會增加Sb2Se3的活化能。Sn於Sb2Se3晶體中的固溶解度約為6 at%。Sb2Se3及(Sb1-xSnx)2Se3形貌均為寬度50-150 nm,長度為數微米的奈米棒狀。Sb2Se3及(Sb1-xSnx)2Se3奈米棒生長方向為[001]。(Sb1-xSnx)2Se3(x = 0.0, 0.1, 0.2, 0.3)能隙隨著Sn濃度(x)的增加分別為1.17, 1.21, 1.25,及1.27 eV,Sn摻雜之 Sb2Se3的能隙調控,使其成為具有潛力之光伏材料。
試料Cu2Fe1.2Sn0.8Se4以醋酸亞鐵Fe(CH3COO)2作為鐵的前驅物可於油胺中270℃,96 小時下得到合乎計量比的純相CFTSe奈米晶。CFTSe奈米晶在Raman光譜中顯示於170與186 cm-1有兩尖峰。Fe(CH3COO)2前驅物相較於FeCl2前驅物有較高的反應性,促進純相CFTSe奈米晶之生長,但是過多的Fe濃度於試料Cu2FexSn0.8Se4(x ≧ 1.3)中會導致CuFeSe2相的生成。CFTSe奈米晶的直接能隙約為1.16 eV。
英文延伸摘要
SUMMARY
In this study, phase formation and optical properties of (Sb1-xSnx)2Se3 (x = 0.0, 0.1, 0.2, 0.3) and Cu2FeSnSe4 (CFTSe) nanocrystals synthesized by various solvothermal processes were explored respectively. On synthesis at 190˚C in teflon-lined stainless steel autoclave, pure Sb2Se3 nanorods formed for 12 h, while pure (Sb1-xSnx)2Se3 nanorods formed for a longer time, 24-36 h, indicating that the Sn dopant increased the activation energy of Sb2Se3. The substitution solubility of Sn in Sb2Se3 was about 6 at%. The Sb2Se3 and (Sb1-xSnx)2Se3 nanorods were 50-150 nm in width and several μm in length. The growth direction of Sb2Se3 and (Sb1-xSnx)2Se3 nanorods was [001]. The bandgaps of (Sb1-xSnx)2Se3 (x = 0.0, 0.1, 0.2, 0.3) were 1.17, 1.21, 1.25, and 1.27 eV, respectively, which increased with the Sn concentration (x). The Sn-doped Sb2Se3 with tunable bandgap may be a promising candidate for photovoltaic applications.
Pure and stoichiometric CFTSe nanocrystals were readily acquired for the Cu2Fe1.2Sn0.8Se4 samples using Fe(CH3COO)2 as the Fe source subjected to synthesis in oleylamine at 270˚C for 96 h. Two sharp Raman peaks at 170 and 186 cm-1 for CFTSe nanocrystals were identified. The higher reactivity of the Fe(CH3COO)2 precursor relative to the FeCl2 one enhanced the growth of pure CFTSe nanocrystals, while more Fe concentration in the Cu2FexSn0.8Se4 (x ≧ 1.3) samples led to the formation of CuFeSe2. The direct bandgap of CFTSe nanocrystals is about 1.16 eV.
Key word:(Sb1-xSnx)2Se3、Cu2FeSnSe4 nanocrystals、one-pot system、wet chemical synthesis、
autoclave
INTRODUCTION
Recently, thin-films solar cells like copper indium gallium selenide (CIGS), and cadmium telluride (CdTe) have made impress improvements in device efficiency. However, due to the scarcity of Ga and In, and toxicity of Cd, both of CIGS and CdTe solar cells can’t popularize. Therefore, erth-abundant, non-toxic and low-cost materials should be explored for high-efficiency solar cells. V-VI compounds such as Sb2Se3, and Sb2S3, and the Cu2-II-IV-VI4 quaternary chalcopyrite compounds such as Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe) containing non-toxic, abundant elements, and excellent opitical properties have drawn great attention as potential candidates for CIGS for use as the solar cell absorber layer. In order to opitimize the device conversion efficiency, the band gap of an ideal PV absorber layer should be around 1.3 eV for the single-junction cell and 1.0-1.9 eV for the two-junction cell. These requirements can be achieved by tunning the bandgaps of PV materials via adjusting the chemical compositions.
Because few studies about the tunable bandgaps of Sb2Se3 and CFTSe were reported. In the present study, the tunable bandgap of Sn-doped Sb2Se3 nanocrystals and Cu2FeSnSe4 alloys were synthesised by one-pot system.
MATERIALS AND METHODS
For Sn-doped Sb2Se3 nanocrystals, a mixture of SnCl2∙2H2O, SbCl3 was dissolved in deionized water with magnetic stirring, and Se powders was dissolved in hydrazine. The resultant solution was transferred into a Teflon-lined stainless steel autoclave and maintained at 180-190℃ for 24-48 h. For Cu2FeSnSe4 alloys, a mixture of CuCl, Fe(CH3COO)2, SnCl4∙5H2O and Se powders was dissolved in OLA with magnetic stirring, and then heated at 270˚C in N2. The products was centrifuged and then washed with hexane and ethanol to remove the dissoluble by-product, and finally dried at about 50℃.
The microstructure of samples was observed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM).The chemical compositions of samples were measured with energy dispersive spectroscopy (EDS). The phases in the samples were analyzed using a X-ray diffractometer (XRD) and Raman spectra. The optical properties of samples were characterized using diffuse reflectance UV-vis spectroscopy in the range of 400-2000 nm. The valence states of the chemical elements in the samples were measured using X-ray photoelectron spectroscopy (XPS).
RESULTS AND DISCUSSION
Sb2Se3 and (Sb1-xSnx)2Se3 (x = 0.1, 0.2, 0.3) powders with single orthorhombic Sb2Se3 phase (JCPD 00-072-1184) were synthesized with autoclave at 190°C for 24-36 h. The XRD peaks of (Sb1-xSnx)2Se3 samples shift to lower diffraction angles as compared with that of the Sb2Se3 sample. From XPS measurement Sn and Sb in the (Sb1-xSnx)2Se3 samples are in the oxidation state of 2+ and 3+ respectively. The substitution of Sn for Sb in (Sb1-xSnx)2Se3 reduces its lattice constant because the ion radius of Sb3+, 0.076 nm, is smaller than that of Sn2+, 0.093 nm. The chemical compositions of (Sb1-xSnx)2Se3 samples show that the limit substitution soliblity of Sn in Sb2Se3 lattice is about 6 at%. The optical bandgap of Sb2Se3 and (Sb1-xSnx)2Se3 (x = 0.0, 0.1, 0.2, 0.3) nanocrystals are in the range of 1.17-1.27 eV, which are obtained from their reflectance spectra by performing the Kubelka-Munk transformation, showing that the optical bandgaps increase with the Sn concentrations.
The Cu2FeSnSe4(CFTSe) samples were synthesized at 270˚C for 84-96 h to obtain pure CFTSe phase which was characterized by the sharp Raman peaks. The Raman spectrum of the sample with Fe(CH3COO)2 precursor synthesized at 270℃ for 96 h shows two sharp peak at 170 and 186 cm-1, both of which shift to lower frequencies as compared with the corresponding ones, 173 and 196 cm-1, of CZTSe. The variation in frequencies of two peaks is due to the change in the force constant of bond.From EDS/TEM analyses, the average chemical compositions of the CFTSe sample were Cu:Fe:Sn:Se = 25.1:13.0:12.4:49.5. CFTSe samples comprised nanoparticles, about 20-50nm in size, and nanosheets, about 50-100 nm in thickness and several hundred nm in size. When the sample with more concentration of Fe(CH3COO)2, Cu2FexSn0.8Se4(x ≧ 1.3), were synthesized at 270℃ for 72-120 h.The CuFeSe2(44-1305) along with the CFTSe phase was formed. The optical bandgap, 1.16 eV, of pure CFTSe was obtained from its reflectance spectra by performing the Kubelka-Munk transformation, which is close to the reported values.
CONCLUSION
1. Sb2Se3 and (Sb1-xSnx)2Se3 (x = 0.1, 0.2, 0.3) powders with single orthorhombic Sb2Se3 phase (JCPD 00-072-1184) were synthesized with autoclave at 190°C for 24-36 h respectively.
2. The maximum substitution solubilities of Sn in Sb2Se3 were about 6 at%.
3. The bandgaps of (Sb1-xSnx)2Se3 (x = 0.0, 0.1, 0.2, 0.3) were 1.17, 1.21, 1.25, and 1.27 eV, respectively, which increased with the Sn concentration (x).
4. pure and stoichiometric CFTSe nanocrystals can be obtained when the Cu2Fe1.2Sn0.8Se4 samle using Fe(CH3COO)2 as Fe source is subjected to synthesis at 270℃ for 96 h in OLA
5. The Raman spectrum of the sample shows two sharp peak at 170 and 186 cm-1.
6. The direc bandgap of CFTSe nanocrystals is about 1.16 eV.
參考文獻
[1] 賴麗蓉, "京都議定書之分析及未來發展勢", 能源季刊, vol. 28, 1998.
[2] 張品全, ”太陽能電池,科學發展,” vol. 349, 2002.
[3] 吳財福, ”太陽能光能供電與照明系統綜論”, 台北:全華科技圖書股份有限公司, 2007.
[4] 蔡進譯, "超高效率太陽電池--從愛因斯坦的光電效應談起," 物理, vol. 27, pp. 701-19, 2005.
[5] R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. Levy-Clement,"FabricationandcharacterizationofZnOnanowires/CdSeCuSCNeta-solar cell," C. R. Chimie, vol. 9, pp. 717-29, 2006.
[6] 黃家華, ”CIGS 太陽能電池技術發展趨勢”, 電子月刊, vo.14 , pp. 138, 2008.
[7] A. Martí and G. L. Araújo, "Limiting efficiencies for photovoltaic energy conversion in multigap systems," Solar Energy Materials and Solar Cells, vol. 43, pp. 203-22, 1996.
[8] A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D: Appl. Phys, vol. 13, pp. 839, 1980.
[9] H. Wei, Y. J. Su, S. Z. Chen, Y. Lin, Z. Yang, X. S. Chen, et al., "Novel SnSxSe1-x nanocrystals with tunable band gap: experimental and first-principles calculations," J. Mater. Chem., vol. 21, pp. 12605-8, 2011.
[10] S. Chen, K. F. Cai, and W. Y. Zhao, "The effect of Te doping on the electronic structure and thermoelectric properties of SnSe," Physic. B, vol. 407, pp. 4154-9, 2012.
[11] W. N. Shafarman, R. Klenk, and B. E. McCandless, "Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap," J. Appl. Phys., vol. 79, pp. 7324-8, 1996.
[12] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, "Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: experimental and first-principles calculations," CrystEngComm., vol. 13, pp. 2222-6, 2011.
[13] J. Sharma, G. Singh, A. Thakur, G. Saini, N. Goyal, and S. Tripathi, "Preparation and characterization of SnSe nanocrystalline thin films," Joptoelectron. Adv. M., vol. 7, pp. 2085-94, 2005.
[14] W. J. Baumgardner, J. J. Choi, Y.-F. Lim, and T. Hanrath, "SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry," J. Am. Chem. Soc., vol. 132, pp. 9519-21, 2010.
[15] R. Vadapoo1, S. Krishnan, H. Yilmaz, and C. Marin, ” Electronic structure of antimony selenide (Sb2Se3) from GW calculations,” Phys. Status Solidi (b), vol. 3, pp. 700–5, 2011.
[16] T. P. Rao, M.C. S. Kumar, S. A. Angayarkanni, amd M. Ashok, “Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis,” J. Alloy. Compd., vol. 485, pp. 413-7, 2009.
[17] B. C. Mohanty, Y. H. Jo, D. H.Yeon, I. J. Choi, and Y. S. Cho, “Stress-induced anomalous shift of optical band gap in ZnO:Al thin films,” Appl. Phys. Lett., vol. 95, pp. 062103, 2009.
[18] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett., vol. 82, pp. 2044, 2003.
[19] J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, and W. Zheng, ”Controlled Synthesis of One-Dimensional Sb2Se3 Nanostructures and Their Electrochemical Properties,” The J. Physi. Chem. C, vol. 113, pp. 13588–92, 2009.
[20] J. Ma, Y. Wang, Y. Wang, P. Peng, J. Lian, X.Duan, Z. Liu, and X. Liu,”One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties,” CrystEngComm., vol. 13, pp. 2369, 2011.
[21] A. Ettema and C. Haas, "An x-ray photoemission spectroscopy study of interlayer charge-transfer in some misfit layer compounds," J. Phys-Condens. Mat., vol. 5, pp. 3817-26, 1993.
[22] Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-Quality Ultralong Sb2Se3 and Sb2S3 Nanoribbons on a Large Scale via a Simple Chemical Route,” J. Phys. Chem. B, vol. 110, pp. 13415-9, 2009.
[23] H. Maghraoui-Meherzi , T. Ben Nasr , M. Dachraoui, ” Synthesis, structure and optical properties of Sb2Se3,” Mat. Sci. Semicon. Proc., vol. 16, pp. 179–84, 2013.
[24] D. Arivuoli, F. D. Gnanam, P. Ramasamy, ”Growth and microhardness studies of chalcogenides of aresnic antimony and bismuth,” J. Mater. Sci. Letts., vol. 7, pp. 711-13, 1988.
[25] T. Zhai, M. Ye, L. Li, X. Fang, M. Liao, Y. Li, Y. Koide, Y. Bando , and D. Golberg ,” Single-Crystalline Sb2Se3 Nanowires for High-Performance Field Emitters and Photodetectors,” Adv. Mater., vol. 22, pp. 4530–3, 2010.
[26] Y. Zhang, G. Li, B. Zhang, and L. Zhang, ” Synthesis and characterization of hollow Sb2Se3 nanospheres,” Mater. Lett., vol. 58, pp. 2279 – 82, 2004.
[27] B. Zhou and J. J. Zhu, ”Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3,” Nanotechnology., vol. 20, pp. 85604, 2009.
[28] Z. Deng, M. Mansuripur, and A. J. Muscat, ” Simple Colloidal Synthesis of Single-Crystal Sb-Se-S Nanotubes with Composition Dependent Band-Gap Energy in the Near-Infrared,” Nano. Lett., vol. 9, pp. 2015-20, 2009.
[29] R. Jin , Z. Liu, L. Yang, J. Liu, Y. Xu, G. Li, ” Facile synthesis of sulfur doped Sb2Se3 nanosheets with enhanced electrochemical performance,” J. Alloy. Compd., vol. 579, pp. 209–17, 2013.
[30] P. Kumar, and R. Thangaraj, “Electrical conduction and optical properties of amorphous (Sb2Se3)100−xSnx,” Solid State Commun., vol. 140, pp. 525–8, 2006.
[31] K. A. Chandrasekharanl and A. G. Kunjomana,” Growth and microindentation analysis of pure and doped Sb2Se3 crystals,” Turkish Journal of Physics, vol. 33, pp. 209 – 17, 2009.
[32] H. Matsushita, T. Ichikawa, A. Katsu, ”Structural, thermodynamical and optical properties of Cu2-II-IV-VI4 quaternary compounds,” J. Mater. Sci., vol. 40, pp. 2003 – 5, 2005.
[33] R. Nitsche, D. F. Sargent, and P. Wild, "Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport," J. Cryst. Growth, vol. 1, pp. 52-3, 1967.
[34] H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, ” Thermal analysis and synthesis from the melts of Cu-based quaternary compounds"Cu-III-IV-"VI4 and Cu2-II-IV-VI4 (II= Zn, Cd; III= Ga, In; IV= Ge, Sn; VI= Se),” J. Cryst. Growth, vol. 208, pp. 416-22, 2000.
[35] L. Guen and W. S. Glaunsinger, "Electrical, magnetic, and EPR studies of the quaternary chalcogenides Cu2AIIBIVX4 prepared by iodine transport," J. Solid State Chem., vol. 35, pp. 10-21, 1980.
[36] L. Guen, W. S. Glaunsinger, and A. Wold, "Physical properties of the quarternary chalcogenides Cu2IBIICIVX4 (BII = Zn, Mn, Fe, Co; CIV = Si, Ge, Sn; X = S, Se)," Mater. Res. Bull., vol. 14, pp. 463-7, 1979.
[37] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," Prog. Photovolt. Res. Appl., vol. 19, pp. 894-7, 2011.
[38] V. T. Tiong, J. Bell, and H. Wang, ” One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach,” Beilstein J. Nanotechnol., vol. 5, pp. 438–46, 2014.
[39] C. Tablero, ” Electronic and optical properties of substitutional V, Cr and Ir impurities in Cu2ZnSnS4,” Sol. Energ. Mater. Sol. C., vol.125, pp. 8–13, 2014.
[40] M. Grossberg , J. Krustok, K. Timmo, and M. Altosaar, ”Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy,” Thin Solid Films, vol. 517, pp. 2489–92, 2009.
[41] S. Ahn,S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, ” Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett., vol. 97, pp. 021905, 2010.
[42] H. Wei , W. Guo, Y. Sun , Z. Yang, and Y. Zhang, ” Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals,” Mater. Lett., vol. 64, pp. 1424–6, 2010.
[43] Y. Cui, R. Deng, G. Wang, and D. Pan, ” A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M= Co2+, Fe2+, Ni2+, Mn2+) nanocrystals,” J. Mater. Chem., vol. 22, pp. 23136, 2012.
[44] S. Nakamura, T. Maeda, and T. Wada, ” Phase Stability and Electronic Structure of In-Free Photovoltaic Materials: Cu2ZnSiSe4,Cu2ZnGeSe4, and Cu2ZnSnSe4,” Jpn. J. Appl. Phys., vol. 49, pp. 121203, 2010.
[45] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber," Prog. Photovolt. Res. Appl., vol. 21, pp. 72-6, 2013.
[46] Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, "Co-evaporated Cu2ZnSnSe4 films and devices," Sol. Energ. Mater. Sol. C., vol. 101, pp. 154-9, 2012.
[47] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell," Prog. Photovolt. Res. Appl., vol. 20, pp. 6-11, 2012.
[48] X. Zhang, N. Bao, K. Ramasamy, Y. H. A. Wang, Y. Wang, B. Lin and A. Gupta,” Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV,” Chem. Commun., vol. , 48, pp. 4956–8, 2012.
[49] C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li , and Y. Liu, ” Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals,” Chem. Commun., vol. 48, pp. 2603–5, 2012.
[50] B. Zhang, M. Cao, L. Li, Y. Sun, Y. Shen, and L. Wang, “Facile synthesis of Cu2FeSnSe4 sheets with a simple solvothermal method,” Mater. Lett., vol. 93, pp. 111–4, 2013.
[51] X. Meng, H. Deng, J. He, L. Zhu, L. Sun, P. Yang, and J. Chu, “Synthesis of Cu2FeSnSe4 thin film by selenization of RF magnetron sputtered precursor,” Mater. Lett., vol. 117, pp. 1–3, 2014.
[52] E. Quintero , M. Quintero, E. Moreno, L. Lara, M. Morocoima , F. Pineda, P. Grima , R. Tovar , P. Bocaranda, J.A. Henao , and M.A. Macı´as, “Magnetic properties for the Cu2MnSnSe4 and Cu2FeSnSe4 compounds,” J. Phys. Chem. Solids, vol.71, pp. 993–8, 2010.
[53] M. Quintero, A. Barreto, P. Grima, R. Tovar, E. Quintero, G. S. Porras, J. Ruiz, J. C. Woolley, G. Lamarche, A. M. Lamarche,“ Crystallographic Properties Of I2–Fe–IV–Vi4 Magnetic Semiconductor compounds”, Mater. Res. Bull., Vol. 34, pp. 2263-70, 1999.
[54] E. Quintero, R. Tovar, M. Quintero, P. Bocaranda, J. M. Broto, H. Rakoto, R. Barbaste, J. C. Woolley, G. Lamarche, and A. M. Lamarche, “Crystallographic, Electrical and Magnetic Properties of Cu2FeGeSe4,” Phys. Status Solidi (b), vol. 220, pp. 417, 2000.
[55] 汪建民等人, "材料分析," 中國材料科學學會, 1998.
[56] A. Hagfeldt, and M. Gratzel, "Light-Induced Redox Reactions in Nanocrystalline Systems", Chem. Rev., vol. 95, pp. 49-68, 1995.
[57] Z. López-Cabaña, C. M. S. Torres, and G. González1, "Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites," Nanoscale Res. Lett., vol. 6, pp. 523, 2011.
[58] W. N. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, "Spectroscopy in heterogeneous catalysis", ACADEIC PRESS INC, New York, pp. 86-129, 1979.
[59] A. M. Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution," J. Phy. Chem. A, vol. 112, pp. 11975-91, 2008.
[60] C. V. Raman, "A change of wave-length in light scattering," Nature, vol. 121, pp. 619, 1928.
[61] G. Y. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, ” The Fractal Splitting Growth of Sb2S3 and Sb2Se3 Hierarchical Nanostructures,” J. Phys. Chem. C, vol. 112, pp. 672-9, 2008.
[62] L. H. Ahrens, "The use of ionization potentials Part 1. Ionic radii of the elements," Geochimica et Cosmochimica Acta, vol. 2, pp. 155-69, 1952.
[63] R. E. Reed Hill, R. Abbaschian, "Physical Metallurgy Principles," PWS Publishing Company, Boston, 1994.
[64] J. J. Buckley, F. A. Rabuffetti, H. L. Hinton, and R. L. Brutchey, "Synthesis and Characterization of Ternary SnxGe1-xSe Nanocrystals," Chem. Mater., vol. 24, pp. 3514-6, 2012.
[65] A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, ” Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells,” J. Am. Chem. Soc., vol. 132, pp. 4060–1, 2010.
[66] J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, and S. K. Tripathi, "Preparation and characterization of SnSe nanocrystalline thin films," J. Optoelectron. Adv. M., vol. 7, pp. 2085-94, 2005.
[67] W. T. Lin, C. Y. Ho , Y. M. Wang, K. H. Wu, W. Y. Chou, ”Tunable growth of (GaxIn1-x)2O3 nanowires by water vapor,” J. Phys. Chem. Solids, vol. 73 ,948–52, 2012.
[68] L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2-2xIn2xO3 solid solutions,” J. Phys. Chem. Solids, vol. 60, pp. 1755–62, 1999.
[69] V. I. Vasyltsiv, Y. I. Rym, and Y. M. Zakharko, “Optical Absorption and Photoconductivity at theBand Edge of β-Ga2-xInxO3,” Phys. Status Solidi (b), vol.195, pp. 653, 1996.
[70] A. Kudo and I. Mikami, “Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution,” J. Chem. Soc., vol. 94, pp. 2929-32, 1998.
[71] M. Grossberg , J. Krustok, K. Timmo, and M. Altosaar, ”Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy,” Thin Solid Films, vol. 517 , pp. 2489–92, 2009.
[72] M. Himmrich and H. Haeuseler, “Far infared studies on stannite and wurtzstannite type compounds,” Spectrochim. Acta, vol. 7, pp. 933-42, 1991.
[73] C. Huang, Y. Chan, F. Liu, D. Tang, J. Yang, Y. Lai, J. Li, and Y. Liu, “Synthesis and characterization of multicomponent Cu2(FexZn1−x)SnS4 nanocrystals with tunable band gap and structure,” J. Mater. Chem. A, vol. 1, pp. 5402-7, 2013.
[74] M. Himmrich, and H. Haeuseler, “Far infrared studies on stannite and wurtzstannite type compounds,” Spectrochim. Acta, vol. 47, pp. 933-42, 1991.
[75] T. T. Zhang, K. W. Li, J. Zeng, Y. L. Wang, and X. M. Song, “Synthesis and structural characterization of a series of lanthanide stannate pyrochlores,” J. Phys. Chem. Solid, vol. 69, pp. 2845-51, 2008.
[76] L. Li , X. Liu, J. Huanga, M. Cao, S. Chen, Y. Shen, and L. Wanga, “Solution-based synthesis and characterization of Cu2FeSnS4 nanocrystals,” Mater. Chem. Phys., vol. 133, pp. 688–91, 2012.
[77] G. Marcano, C. Rincon, S. A. Lopez, G. Sanchez Perez, J. L. Herrera-Perez, and J. G. Mendoza-Alvarez, ”Raman spectrum of monoclinic semiconductor Cu2SnSe3,” Solid State Commoun., vol. 151, pp. 84-6, 2011.
[78] S. Doeuff, M. Henry, C. Sanchez, and J. Livage, “Hydrolysis of Titanium Alkoxids: Modification of the Molecular Precursor by Acetic Acid,” J. Non-Cryst. Solids, vol. 89, pp. 206-16, 1987.
[79] M. H. Chiang, Y. S. Fu, T. H. Guo, H. L. Liu, and W. T. Lin, “Effects of Zn precursors on solvothermal synthesis of Cu2ZnSnSe4 nanocrystals,” Mater. Lett., vol. 83, pp. 192-4, 2012.
[80] E. Roque Infante, J. M. Delgado, and S. A. Lpez Rivera, ” Synthesis and crystal structure of Cu2FeSnSe4,a I2 II IV VI4,semiconductor,” Mater. Lett., vol. 33, pp. 67-70, 1997.
[81] K. L. Ou, J. C. Fan, J. K. Chen, C. C. Huang, L. Y. Chen, J. H. Hoa and J. Y. Chang, “, Hot-injection synthesis of monodispersed Cu2ZnSn(SxSe1-x)4 nanocrystals:tunable composition and optical properties,” J. Mater. Chem., vol. 22, pp. 14667-73, 2012.
[82] G. Marcano, C. Rincon, L. de Chalbaud, D. B. Bracho ,and G. Sanchez Perez, “Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3,” J. Appl. Phys., vol. 90, pp. 1847-53, 2001.
[83] G. Suresh Babu, Y.B. Kishore Kumar, Y. Bharath Kumar Reddy, V. Sundara Raja, “Growth and characterization of Cu2SnSe3 thin films,” Mater. Chem. Phys., vol. 96, pp. 442–6, 2006.