簡易檢索 / 詳目顯示

研究生: 張育綸
Chang, Yu-Lun
論文名稱: 鹼土碳酸鹽與氧化物的固態反應過程中相生成及物質擴散之研究
Study of Phase Formation and Material Diffusion in the Solid-State Reaction between Alkaline Earth Carbonates and Oxides
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 115
中文關鍵詞: 固態反應法鋁酸鍶鈦酸鋇
外文關鍵詞: solid state reaction, SrAl2O4, BaTiO3
相關次數: 點閱:75下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化物與碳酸鹽之間的固態反應對於工業上生產許多功能陶瓷粉末相當的重要,藉由了解鹼土金屬碳酸鹽與氧化物間反應的機制,不僅可降低其反應溫度,同時亦可避免產物粒子形成凝聚與粗化,以合成出高純度奈米級粉末。由於反應的過程同時牽涉碳酸鹽的分解以及氧化物間物質擴散的過程,許多矛盾的說法以及不明的實驗結果目前仍無法被合理地解釋。因此本研究藉由合成SrAl2O4以及BaTiO3兩種材料系統的固態反應過程,深入探討碳酸鹽與氧化物之固態反應機制,進而了解鹼土碳酸鹽與氧化物進行固態反應的過程中可能包含的反應機構以及物質擴散之現象。
    由SrCO3與Al2O3合成SrAl2O4的實驗中,發現反應過程可能同時包含SrO與Al2O3兩種擴散機制。在部分CO2的氣氛下,其反應之DTG結果顯示四個階段的失重變化,由低溫至高溫分別推測為SrO擴散主導的SrAl2O4生成反應,Al2O3擴散主導的SrAl2O4生成反應,SrO擴散主導的Sr3Al2O6生成反應,以及SrCO3獨自分解的反應,其中Al2O3擴散進入SrAl2O4的結構時,產生的氧空缺會造成靜電排斥力,而將高溫相hexagonal SrAl2O4穩定於室溫中,此外,在SrCO3相變的過程中,亦可能會發生Hedvall effect而促進Al2O3擴散進入SrCO3的結構,進而產生內應力將高溫相hexagonal SrCO3穩定於室溫下。
    由BaCO3與TiO2合成BaTiO3的實驗中,其反應與前述擴散機構類似。在部分CO2氣氛下,反應之DTG結果顯示三個階段的失重變化,由低溫至高溫分別推測為BaO擴散主導的BaTiO3生成反應、TiO2擴散主導的BaTiO3生成反應,以及BaO擴散主導的Ba2TiO4生成反應。然而在空氣氣氛下進行熱處理時,其第三階段的反應可能會與第二階段的反應發生重疊,因此一般不容易觀察到TiO2擴散的現象。
    使用介面活性劑、小粒徑或不同晶體結構的起始原料均對反應會造成明顯的影響。在SrCO3與Al2O3生成SrAl2O4的固態反應中,使用γ-Al2O3可於反應初期生成較多的SrAl2O4產物,而當縮小SrCO3粒徑時,可以幫助反應較容易獲得純相SrAl2O4產物。在BaCO3與TiO2生成BaTiO3的固態反應中,利用聚乙烯亞胺(PEI)對於BaCO3的表面進行改質,可以有效地提高反應物間的混合均勻度,有助於BaTiO3生成反應的發生,而使用小粒徑BaCO3除了可以增加反應接觸面積,且可提供較短的擴散距離而有利於TiO2的擴散,因此可於800oC的低溫下長時間反應得到幾乎為純相的BaTiO3產物。

    The conventional solid-state synthesis is usually used to prepare many important functional ceramics, especially the solid state reaction between oxides and alkaline earth carbonates. However, the reaction mechanism related to the decomposition of carbonates and the diffusion of oxides is complicated and is still unclear. This study conducted the solid-state synthesis of SrAl2O4 from SrCO3 and Al2O3, and BaTiO3 from BaCO3 and TiO2 to evaluate the complex reaction mechanism, culminating in the presentation of phase evolution and material diffusion model.
    In the synthesis of SrAl2O4, the dual diffusion mechanism of SrO and Al2O3 was observed. The diffusing Al2O3 not only reacts with SrCO3 to form SrAl2O4, but also plays a viable role in stabilizing the metastable species by generation of lattice strains and oxygen vacancies. The excess Al2O3 ions existing in the SrAl2O4 structure can result in the increase of oxygen vacancy concentration, providing some clues to the stabilization of the hexagonal SrAl2O4 at room temperature. In addition, a small amount of Al2O3 ions may enter the certain specific positions of the SrCO3 structure that causes the lattice strain to stabilize the hexagonal SrCO3 at room temperature as well. In the synthesis of BaTiO3, the reaction mechanism is similar to the synthesis of SrAl2O4. But the overlapping of each reaction makes it difficult to observe the TiO2 diffusion when the calcination is in air.
    The solid state syntheses could be influenced by adding surfactants, reducing the raw material size and the variation of the raw material crystal structure. Compared to χ-Al2O3 and α-Al2O3, using γ-Al2O3 can promote the formation of SrAl2O4 in the initial stage. Besides, using small SrCO3 is helpful to obtain pure SrAl2O4 products. PEI addition can improve the mixing homogeneity of reactants that facilitate the formation reaction of BaTiO3. Meanwhile using small BaCO3, nearly pure BaTiO3 product with particle sizes less than 50nm was obtained at 800oC.

    摘要 I Abstract III 致謝 IV 圖目錄 VII 表目錄 XI 第一章 序論 1 1-1 研究背景 1 1-2 研究目的及方法 2 第二章 前人研究及理論基礎 3 2-1固態反應法 3 2-1-1物質擴散的方式 3 2-1-2相生成的方式 7 2-1-3氣固反應的熱力學 9 2-1-4反應動力學 11 2-2鹼土金屬碳酸鹽 13 2-2-1晶體結構 13 2-2-2高溫相轉換 13 2-3鹼土碳酸鹽與氧化物間的固態反應 15 2-3-1前人提出的反應機制 15 2-3-2熱處理氣氛的影響 19 2-3-3原料尺寸與機械研磨處理的影響 21 2-4鋁酸鍶(SrAl2O4)之簡介 24 2-4-1晶體結構及應用 24 2-4-2合成方法 26 2-5鈦酸鋇(BaTiO3)之簡介 27 2-5-1晶體結構及應用 27 2-5-2合成方法 29 第三章 固態反應法合成SrAl2O4的機制 30 3-1前言 30 3-2實驗方法 30 3-2-1樣品準備 30 3-2-2樣品分析 30 3-3 CO2氣氛及熱處理溫度對相生成之影響 31 3-4 CO2氣氛下混合樣品之熱行為 42 3-5界面擴散之觀察 52 3-6結論 62 第四章 製程參數對反應合成SrAl2O4之影響 63 4-1前言 63 4-2實驗方法 63 4-2-1樣品準備 63 4-2-2樣品分析 67 4-3不同Al2O3對反應之影響 68 4-4不同SrCO3粒徑對反應之影響 74 4-5不同化學計量比例對產物性質之影響 78 4-6結論 82 第五章 固態反應法合成BaTiO3的機制以及製程參數之影響 83 5-1前言 83 5-2實驗方法 83 5-2-1樣品準備 83 5-2-2樣品分析 84 5-3空氣氣氛下混合樣品其熱行為及相生成之觀察 85 5-4 CO2氣氛下混合樣品其熱行為及相生成之觀察 89 5-5 添加PEI對反應的影響 92 5-6 不同BaCO3粒徑對反應的影響 99 5-7 結論 104 第六章 綜合討論 105 6-1鹼土碳酸鹽與氧化物間固態反應的物質擴散機制 105 6-2製程參數對反應的影響及促進產生純相產物的方法 107 第七章 總結論 108 參考文獻 110

    1.W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd; John Wiley& Sons, 1991.
    2.R.C. Ropp, Luminescence and the Solid State, Elsevier, 2004.
    3.Y.M. Chiang, D.P. Birnie, and W.D. Kingery, Physical Ceramics, John Wiley& Sons, 1997.
    4.A. Putnis, and J.D.C. McConnell, Principle of Mineral Behaviour, Elsevier, 1980.
    5.D.A. Porter, and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd; CRC Press, 2001.
    6.C.H. Bamford, and C.F.H. Tipper, Comprehensive Chemical Kinetics, vol 22; Elsevier, 1980.
    7.T.R. Ring, Fundamentals of Ceramic Powder Processing and Synthesis, Academic Press, 1979.
    8.C. Klein, Mineral Science, 22nd; John Wiley& Sons, 2002.
    9.J. J. Lander, “Polymorphism and Anion Rotational Disorder in the Alkaline Earth Carbonates,” J. Chem. Phys., 17, 892-0 (1949).
    10.I.A. Kiseleva, A.R. Kotelnikov, K.V. Martynov, L.P. Ogorodova, and J.K. Kabalov, “Thermodynamic Properties of Strontianite-Witherite Solid Solution (Sr,Ba)CO3,” Phys. Chem. Minerals, 21, 392-400 (1994).
    11.T. Tsuji, H. Kurono, and Y. Yamamura, “Formation Reaction and Thermodynamic Properties of SrCe1-yEuyO3-x,” Solid State Ionics, 136-137, 313-7 (2000).
    12.T. Nishino, “Formation Process of Metastable Phase (δ) of Alkaline-Earth Carbonate,” J. Am. Ceram. Soc., 70, C-162-4 (1987).
    13.M. Sweeney, “Thermal Stabilities of Isoelectronic, Isostructural Nitrates, Carbonates and Borates,” Thermochim. Acta, 11, 409-24 (1975).
    14.A. Kato, and Y. Suyama, “Study of Reaction of Finely-Divided Silica with Barium Carbonate by TG and DTA,” J. Therm. Anal., 7, 149-158 (1975).
    15.M. Cournil, M. Soustelle, and G. Thomas, “Solid-Solid Reactions, II: Mechanism of Barium Metatitanate Synthesis,” Oxidation Metal., 13, 89-104 (1979).
    16.A. Beauger, J.C. Mutin, and J.C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3, Part 2 Study of solid-solid reaction interfaces,” J. Mater. Sci., 18, 3543-50 (1983).
    17.M. I. Zaki, G. A. M. Hussien, and R. B. Fahim, ”Characterization of the Powder Mixture of the Reaction between Alumina and Barium Carbonate,” J. Mater. Sci. Lett., 4, 517-22 (1985).
    18.M. I. Zaki, G. A. M. Hussien, and R. B. Fahim, ” A Thermogravimetric Study of the Solid-state Reaction Between Alumina and Strontium Carbonate,” J. Therm. Analysis, 30, 129-34 (1985).
    19.J.C. Niepce and G. Thomas,”About the Mechanism of the Solid-Way Synthesis of Barium Metatitanate, Industrial Consequences,” Solid State Ionics, 43, 69-76 (1990).
    20.K. Melzer, J. Suwalski, M. Lukasiak, B. Lippold, and A. Martin, ”Hyperfine Fields and Magnetic Properties of Barium Monoferrite,” Hyperfine Interaction, 54, 613-8 (1990).
    21.V.K. Singh, M.M. Ali, and U.K. Mandal, ”Formation Kinetics of Calcium Aluminates,” J. Am. Ceram. Soc., 73, 872-76 (1990).
    22.M.A. Gulgun, O.O. Popoola, and W.M. Kriven, “Chemical Synthesis and Characterization of Calcium Aluminate Powders,” J. Am. Ceram. Soc., 77, 531-39 (1994).
    23.L.P. Camby, and G. Thomas, “Kinetic Considerations About the Successive Nucleations of Various Aluminates in the BaCO3-γ-Al2O3 Reaction,” Solid State Ion., 93, 315-20 (1997).
    24.E. Brzozowski and M.S. Castro, “Synthesis of Barium Titanate Improved by Modifications in the Kinetics of the Solid State Reaction,” J. Europ. Ceram. Soc., 20, 2347-2351 (2000).
    25.E. Brzozowski, J. Sanchez, and M. S. Castro, “BaCO3-TiO2 Solid State Reaction: A Kinetic Study,” J. Mater. Synth. Proces., 10, 1-5 (2002).
    26.E. Brzozowski, M.S. Castro, “Lowering the Synthesis Temperature of High-purity BaTiO3 Powders by Modifications in the Processing Conditions,” Thermochim. Acta, 398, 123-129 (2003).
    27.J. Bera, and D. Sarkar, “Formation of BaTiO3 from Barium Oxalate and TiO2,” J. Electroceram., 11, 131-7 (2003).
    28.A. Ubaldini, V. Buscaglia, C. Uliana, G. Costa, and M. Ferretti, “Kinetics and Mechanism of Formation of Barium Zirconate from Barium Carbonate and Zirconia Powders,” J. Am. Ceram. Soc., 86, 19-25 (2003).
    29.C. Ando, R. Yanagawa, H. Chazono, H. Kishi, and M. Senna, “Nuclei-Growth Optimization for Fine-Grained BaTiO3 by Precision-Controlled Mechanical Pretreatment of Starting Powder Mixture,” J. Mater. Res., 19, 3592-3599 (2004).
    30.A. Graff, S. Senz, D. Voltzke, H.P. Abicht, and D. Hesse, “Microstructure evolution during BaTiO3 formation by solid-state reactions on rutile single crystal surfaces,” J. Eur. Ceram. Soc., 25, 2201-6 (2005).
    31.M.E. Ebrahimi, M. Allahverdi, and A. Safari. “Synthesis of High Aspect Ratio Platelet SrTiO3,” J. Am. Ceram. Soc., 88, 2129-32 (2005).
    32.G. Chen, D. Niu, and X. Liu, Preparation of SrAl2O4 from An Oxide Mixture via A High-Energy Ball Milling, J. Alloys Compd., 399, 280-3 (2005).
    33.J. Bera, and S.K. Rout, “SrTiO3-SrZrO3 Solid Solution: Phase Formation Kinetics and Mechanism through Solid-Oxide Reaction,” Mater. Res. Bull., 40, 1187-93 (2005).
    34.M.T. Buscaglia, M. Bassoli, and V. Buscaglia, “Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2,” J. Am. Ceram. Soc., 88, 2374-2379 (2005).
    35.A. Lotnyk, S. Senz, and D. Hesse, “Formation of BaTiO3 Thin Films from (110) TiO2 Rutile Single Crystals and BaCO3 by Solid State Reactions,” Solid State Ionics, 177, 429-436 (2006).
    36.G. Chen, and D. Niu, Mechanical Activation of Barium Aluminate Formation from BaCO3-Al2O3 Mixtures, J. Alloys Compd., 413, 319-22 (2006).
    37.S.S. Ryu, S.K. Lee, and D.H. Yoon, “Synthesis of Fine Ca-doped BaTiO3 Powders by Solid-State Reaction Method-Part I: Mechanical Activation of Starting Materials,” J. Electroceram., 18, 243-50 (2007).
    38.S.S. Ryu, and D.H. Yoon, “Solid-State Synthesis of Nano-Sized BaTiO3 Powder with High Tetragonality,” J. Mater. Sci., 42, 7093-99 (2007).
    39.S. Luo, J. Zhang, and N. Wang, “Kinetics of Strontium Titanate Formation from Solid State Reaction between Strontium Carbonate and Anatase,” High Temp. Mater. Proc., 26, 33-42 (2007).
    40.M.T. Buscaglia, M. Bassoli, and V. Buscaglia, “Solid-State Synthesis of Nanocrystalline BaTiO3: Reaction Kinetics and Powder Properties,” J. Am. Ceram. Soc., 91, 2862-2869 (2008).
    41.A. Beauger, J.C. Mutin, and J.C. Niepce, “Synthesis Reaction of Metatitanate BaTiO3, Part 1 Effect of the Gaseous Atmosphere Upon the Thermal Evolution of the System BaCO3-TiO2,” J. Mater. Sci., 18, 3041-46 (1983).
    42.M.T. Buscaglia, V. Buscaglia, and R. Alessio, “Coating of BaCO3 Crystals with TiO2: Versatile Approach to the Synthesis of BaTiO3 Tetragonal Nanoparticles,” Chem. Mater., 19, 711-718 (2007).
    43.Y.L. Chang, H.I Hsiang, and M.T. Liang, “Characterization of Strontium Aluminate Phosphors Prepared from Milled SrCO3,” Ceram. Int., 35, 1027-21 (2009).
    44.F.P. Glasser, and L.S.D. Glasser, “Crystal Chemistry of Some AB2O4 Compounds,” J. Am. Ceram. Soc., 46, 377-380 (1963).
    45.K. Fukuda, and K. Fukushima, “Crystal Structure of Hexagonal SrAl2O4 at 1073K,” J. Solid State Chem., 178, 2709-14 (2005).
    46.A. Douy, and M. Capron, “Crystallisation of Spray-Dried Amorphous Precursors in the SrO-Al2O3 System: A DSC Study,” J. Eur. Ceram. Soc., 23, 2075-81 (2003).
    47.H. Yamada, W.S. Shi, K. Nishikubo, and C.N. Xu, “Determination of the Crystal Structure of Spherical Particles of SrAl2O4: Eu Prepared by the Spray Method,” J. Electrochem. Soc., 150, E251-4 (2003).
    48.W.S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, and C.N. Xu, “Novel Structural Behavior of Strontium Aluminate Doped with Europium,” J. Electrochem. Soc., 151, H97-100 (2004).
    49.K.Y. Jung, and H.W. Lee, H.K. Jung, “Luminescent Properties of (Sr, Zn)Al2O4:Eu2+, B3+ Particles as A Potential Green Phosphor for UV LEDs,” Chem. Mater., 18, 2249-55 (2006).
    50.T. Katsumata, K. Sasajima, T. Nabae, S. Komuro, and T. Morikawa, “Characteristics of Strontium Aluminate Crystals Used for Long-Duration Phosphors,” J. Am. Ceram. Soc., 81, 413-416 (1998).
    51.L.T. Chen, C.S. Hwang, I.G. Chen, S.J. Chang, “Chromaticity of Inhomogeneous Broadening Effect on CaxSr1−xAl2O4:Eu2+ Phosphors,” J. Alloys Compd. 426, 395-399 (2006).
    52.Y. Lu, Y. Li, Y. Xiong, D. Wang, and Q. Yin, “SrAl2O4:Eu2+, Dy3+ Phosphors Derived from A New Sol-Gel Route,” Microelectron. J., 35, 379-382 (2004).
    53.C. Chang, Z. Yuan, and D. Mao, “Eu2+ Activated Long Persistent Strontium Aluminate Nano Scaled Phosphor Prepared by Precipitation Method,” J. Alloys. Compd., 415, 220-224 (2006).
    54.L. Wang, and Y. Zhu, “Preparation of Nano-Sized SrAl2O4 using An Amorphous Hetero-Nucleus Complex as A Precursor,” J. Alloys Compd., 370, 276-280 (2004).
    55.T. Peng, H. Yang, X. P, B. Hu, Z. Jiang, and C. Yan, “Combustion Synthesis and Photoluminescence of SrAl2O4:Eu,Dy Phosphor Nanoparticles,” Mater. Let., 58, 352-356 (2004).
    56.A.J. Moulson, and J. M. Herbert, Electroceramics, Chapman & Hall, 1990.
    57.H. Yamamura, A. Watanabe, S. Shirasaki, Y. Moriyoshi, and M. Tanada, “Preparation of Barium Titanate by Oxalate Method in Ethanol Solution,” Ceram. Int., 11, 17-22 (1985).
    58.M. Vetith, S. Mathur, N. Lecerf, V. Huch, and T. Decker, “Sol-Gel Synthesis of Nano-Scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 Oxides via Single-Source Alkoxide Precursors and Semi-Alkoxide Routes,” J. Sol-Gel Sci.Tech., 15, 145-158 (2000).
    59.M. Viviani, M. T. Buscaglia, A. Testino, V. Buscaglia, P. Bowen, and P. Nanni, “The Influence of Concentration on the Formation of BaTiO3 by Direct Reaction of TiCl4 with Ba(OH)2 in Aqueous Solution,” J. Eur. Ceram. Soc., 23, 1383-1390 (2003).
    60.A. Nag, and T. R. N. Kutty, “Role of B2O3 on the Phase Stability and Long Phosphorescence of SrAl2O4:Eu, Dy,” J. Alloys Compd., 354, 221-31 (2003).
    61.A. Nag, and T. R. N. Kutty, “The Mechanism of Long Phosphorescence of SrAl2-xBxO4 (0 < x < 0:2) and Sr4Al14-xBxO25 (0.1 < x < 0.4) Co-doped with Eu2+ and Dy3+,” Mater. Res. Bull., 39, 331-42 (2004).
    62.E. D. Bacce, A. M. Pires, M. R. Davalos, and M. Jafelicci Jr, “Thermal Decomposition and Rehydration of Strontium Oxalate: Morphological Evolution,” Inter. J. Inorg. Mater., 3, 443-52 (2001).
    63.G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed.; John Wiley & Son, 2001.
    64.U. Rodehorst, M. A. Cappenter, S. Marion, and C. M. B. Henderson, “Structural Phase Transitions and Mixing Behaviour of the Ba-aluminate (BaAl2O4)–Sr–aluminate (SrAl2O4) Solid Solution,” Mineral. Mag., 67, 989-13 (2003).
    65.Y.L. Chang, H.I. Hsiang, and M.T. Liang, “Phase Evolution During Formation of SrAl2O4 from SrCO3 and α-Al2O3/AlOOH,” J. Am. Ceram. Soc., 90, 2759-65 (2007).
    66.Charles S. Barrett, Structure of Metals, McGraw Hill, 1943.
    67.I. Barin and O. Knacke, Thermodynamical Properties of Inorganic Substances, Berlin: Springer-Verlag, 1973.
    68.J. D. Hancock, and J. H. Sharp, “Method of Comparing Solid-state Kinetic Data and Its Application to the Decomposition of Kaolinite, Brucite, and BaCO3,” J. Am. Ceram. Soc., 55, 74-7 (1972).
    69.M. W. Chase, Jr., C. A. Davis, J. R. Dowwnney Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud,“JANAF Thermochemical Tables, 3rd Edition,” J. Phys. Chem. Ref. Data, suppl. No. 1, 14, (1985).
    70.C. R. Dick, and G. E. Ham, “Characterization of Polyethylenimine,” J. Macromol Sci. Chem., A4,1301-1314 (1970).
    71.C.C. Chung, and J.H. Jean, “Aqueous Synthesis of Y2O2S: Eu / Silica Core-Shell Particles,” J. Am. Ceram. Soc., 88, 1341-1344 (2007).
    72.X. Zhu, T. Uchikoshi, T.S. Suzuki, and Y. Sakka, “Effect of Polyethylenimine on Hydrolysis and Dispersion Properties of Aqueous Si3N4 Suspensions,” J. Am. Ceram. Soc., 90, 797-804 (2007).
    73.L.K. Templeton, and J.A. Pask, “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2,” J. Am. Ceram. Soc., 42, 212-216 (1959).
    74.T. Ishii, R. Furuichi, T. Nagasawa, and K. Yokoyama, “The Reactivities of TiO2 (Rutile and Anatase) for the Solid-state Reactions with BaSO4 and BaCO3,” J. Therm. Anal. Calorim., 19, 467-474 (1980).
    75.K. Kobayashi, T. Suzuki, and Y. Mizuno, “Microstructure Analysis of Solid-State Reaction in Synthesis of BaTiO3 Powder Using Transmission Electron Microscope,” Appl. Phys. Express, 1, 041602.1-.3 (2008).
    76.U. Manzoor, and D.K.Kim, “Synthesis of Nano-sized Barium Titanate Powder by Solid-state Reaction between Barium Carbonate and Titania,” J. Mater. Sci. Technol., 23, 655-658 (2007).
    77.S. Leew, C.A. Randall, and Z.K. Liu, “Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate,” J. Am. Ceram. Soc., 90, 2589-2594 (2007).

    下載圖示 校內:立即公開
    校外:2020-12-25公開
    QR CODE