簡易檢索 / 詳目顯示

研究生: 吳奕寰
Wu, Yi-Huan
論文名稱: 以新穎製程製作高品質塔姆電漿子雷射共振腔之研究
Research on fabricate high quality Tamm plasmon laser cavity by novel process
指導教授: 周昱薰
Chou, Yu-Hsun
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 塔姆電漿子鈣鈦礦品質因子
外文關鍵詞: Tamm plasmon, perovskite, Q factor
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著半導體製程的進步,半導體雷射的共振腔長度不斷的縮小,其中共振腔長度為數個半波長的大小的雷射結構,稱之微共振腔結構。微共振腔雷射具有體積小、功耗低以及成本便宜等優勢。本論文運用金屬與週期性的介電質結構(分散式布拉格反射鏡)製作混合式微共振腔,其中,金屬和週期性介電質結構表面會形成一種新型態的表面電漿子稱之為塔姆電漿子(Tamm Plasmon),藉由週期性結構的介電質與金屬薄膜將能量限縮於共振腔內並提升光與物質耦合的強度。此結構不同於一般表面電漿雷射只能容許 TM 模態的存在,塔姆電漿子雷射可同時具有 TE 與 TM 模態,在訊號傳遞上多了一個自由度(degree of freedom)。至今表面電漿極激子雷射的光激發研究幾乎只能在低溫下實現,而金屬薄膜的粗糙度所造成的高損耗也提高了雷射的閾值,以上是目前此類型元件所面臨的困難點。為了克服以上困難,我們選擇在金屬與介電質間所加入有機鈣鈦礦,利用有機鈣鈦礦高光學增益的特性降低閾值,並藉由調整鹵素的成分,達到理想的發光波段。我們更進一步利用電子束蒸鍍機(E-gun)的鍍率來成長金屬薄膜,並透過原子力顯微鏡(AFM)的觀察,有效控制金屬粗糙度,進而提升整體雷射共振腔的品質因子(Q factor)。

    In this research, we developed a high-quality Tamm plasmon laser cavity. We chose perovskite as the gain medium and avoided damaging the gain medium in the fabrication process. Therefore, we spin-coated perovskite on the bottom reflector and coated metal on the top layer. Then, we fabricated the laser cavity by bonding the top and bottom mirrors. To effectively improve the metal surface roughness and reduce the interface scattering loss, we controled the e-gun's sputtering rate to control the metal film roughness. We also studied how the Q value of the resonant cavity mode changes when the laser cavity is bonded by different pressures. We have confirmed that we squeeze the cavity through experiments with less force to improve the Q factor (value 358.7). According to the reflection spectrum, we also uccessfully demonstrated the Tamm plasmon TE polarization mode in the equipment and fabricated the Tamm laser cavity.

    目錄 摘要 II 致謝 VII 目錄 IX 圖目錄 XIV 表目錄 XIX 第一章 序論 1 1-1前言 1 1-2 研究動機與目的 2 1-3 論文大綱 3 第二章 塔姆電漿子雷射元件基礎架構 4 2-1 何謂雷射 4 2-1-1 雷射原理 5 2-1-2 吸收(absorption) 5 2-1-3 自發輻射(spontaneous emission) 6 2-1-4 受激輻射(stimulated emission) 6 2-2 雷射機制 7 2-2-1 激發來源(Pumping Source) 7 2-2-2 增益介質(Gain Medium) 8 2-2-3 共振腔(Optical Cavity) 8 2-3 分佈式布拉格反射鏡(Distributed Bragg Reflector, DBR) 10 2-4 極激子(polariton)特性 11 2-5 表面電漿子(surface plasmon) 14 2-5-1 金屬平面上的表面電漿子 14 2-5-2 受激輻射引致表面電漿子放大(SPASER) 19 2-5-3 塔姆電漿子(Tamm plasmon) 19 2-6 鈣鈦礦薄膜(Perovskite Thin Film) 24 第三章 實驗方法與步驟 26 3-1實驗設計流程 26 3-2試片製備流程 26 3-2-1試片結構設計 26 3-2-2 金屬遮罩製作 28 3-2-3上層試片製程步驟 29 3-2-4 下層結構製程步驟 31 3-2-5上下層試片黏合流程 33 3-3光致發光(Photoluminescence , PL)量測設計 35 3-3-1 光致發光之量測光路 35 3-3-2 光致發光量測步驟 36 3-4 實驗製程與量測機台介紹 37 3-4-1電子束蒸鍍機(E-beam Evaporator) 37 3-4-2 原子力顯微鏡(Atomic Force Microscpoic , AFM) 38 3-4-3 掃描式電子顯微鏡(Scanning Electron Microscope , SEM) 39 3-4-4 紫外光-可見光光譜儀(Ultraviolet-Visible Spectroscopy) 40 3-4-5 光致發光之光譜系統 41 3-5 實驗使用藥品及機台之型號與規格 42 第四章 實驗結果與討論 44 4-1 前言 44 4-2 使用電子束蒸鍍機以不同的鍍率蒸鍍金屬之分析 45 4-2-1 以不同鍍率蒸鍍金(Au)之分析 45 4-2-2 以不同鍍率蒸鍍銀(Ag)之分析 52 4-2-3 本章小結 58 4-3 利用旋轉塗佈法製備MAPbI3與FAMACsPb(BrI)3 59 4-4 利用電子掃描顯微鏡與紫外光-可見光光譜儀之布拉格反射鏡量測 62 4-5 塔姆電漿子雷射共振腔之光致發光量測 63 4-5-1 布拉格反射鏡鍍金薄膜之反射率量測 63 4-5-2 塔姆雷射共振腔製作與量測 67 4-5-3 以銀薄膜(Ag)製作上層反射鏡並施加不同壓力下製做共振腔 70 4-5-4 以金薄膜(Au)製作上層反射經並施加不同壓力製作共振腔 74 4-5-5 本章小結 77 第五章 結論與未來展望 79 5-1結論 79 5-2未來展望 80 參考文獻 82

    參考文獻
    [1] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent Light Emission From GaAs Junctions," Physical Review Letters, vol 9, no. 9, pp. 366-368, 1962.
    [2] C. Weisbush, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity," Physical Review Letters, vol. 69, no. 23, pp. 3314-3317, 1992.
    [3] L. V. Keldysh, and A. N. Kozlov, "Collective properties of excitons in semiconductors," Soviet Physics Journal of Experimrntal Theoretical Physics, vol. 27, no. 3, pp. 521-527, 1968.
    [4] D. Bergman, and M. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Physical Review Letters, vol. 90, no. 9, pp. 0274021-0274024, 2003.
    [5] A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, "Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing," Optics Express, vol. 17, pp. 21191-21204, 2009.
    [6] Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, "High-Operation-Temperature Plasmonic Nanolasers on Single- Crystalline Aluminum," Nano Letters, vol. 16, pp. 3179-3186, 2016.
    [7] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers," Nano Letters, vol. 14, pp. 5995-6001, 2014.
    [8] C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, "Emission of Tamm plasmon/exciton polaritons," Applied Physics Letters, vol. 95, pp. 1511141-1511143, 2009. A. Einstein, "The Quantum Theory of Radiation," Physikalische Zeitschrift, vol. 18, 1917.
    [9] B. H. Lavenda, "Einstein's Theory of Quantum Radiation," International Journal of Theoretical Physics, vol. 28, no. 6, 1989.
    [10] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Royal Society, vol. 114, pp. 243-265, 1927.
    [11] A. Chodos, "Maiman Builds First Working Laser, "APS News Physics History, vol. 19, no. 5, 2010.
    [12] M. T. Hill, and M. C. Gather, "Advances in small lasers, "Nature Photonics, vol 8, 2014.
    [13] L. A. Coldren, S. W. Corzine, and M. L. Mašanović, "Diode lasers and photonic integrated circuits," John Wiley &Sons Inc, Chap 4, pp. 158-162, 2012.
    [14] 盧廷昌, 王興宗, "半導體雷射導論," 臺北市:五南出版社, 2008.
    [15] 楊國輝, 黃宏彥, "雷射原理與量測概論," 臺北市:五南出版社, 2008.
    [16] M. A. Butt, S. A. Fomchenkov, and S. N. Khonina, "Multilayer dielectric stack Notch filter for 450-700 nm wavelength spectrum," Conference Paper (PDF Available), 2017.
    [17] C. Weisbush, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity," Physical Review Letters, vol. 69, no. 23, pp. 3314-3317, 1992.
    [18] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. Andŕe, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, "Bose–Einstein condensation of exciton polaritons," Nature, vol. 443, no.28, pp. 409-414, 2006.
    [19] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Original Articles, vol 4, pp. 396-402, 1902.
    [20] U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," OSA, vol. 31, pp. 213-222, 1941.
    [21] A. Hessel, and A. A. Oliner, "A New Theory of Wood’s Anomalies on Optical Gratings," OSA, vol 4, pp. 1275-1297, 1965.
    [22] 邱國斌, 蔡定平, "左手材料奈米平板的表面電漿量子簡介," 物理雙月刊, pp. 373, 2003.
    [23] P. Drude, "Zur Elektronentheorie der Metalle," Annalen der physic, pp. 576-613, 1900.
    [24] 邱國斌, 蔡定平, "金屬表面電漿簡介," 物理雙月刊, pp. 472, 2006.
    [25] D. Bergman, and M. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Semantic Scholar, vol. 90, no. 2, 2003.
    [26] M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, "Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror," Physical review B, vol 76, pp. 1654151-165415, 2007.
    [27] R. Das, A. Pandey, T. Srivastava, and R. Jha, "Guided-Mode Analysis of Tamm-Plasmon Polariton at Metal–Heterostructure Dielectric Interface," Jonrnal of lightwave technology, vol 32, no. 6, pp. 1221-1227, 2014.
    [28] A. Navrotsky and D. J. Weidner, "Perovskite: a structure of great interest to geophysics and materials science," Washington DC American Geophysical Union Geophysical Monograph Series, vol. 45, 1989.
    [29] J. P. Attfield, P. Lightfoot, and R. E. Morris, "Perovskites," Dalton Transactions, vol. 44, no. 23, pp. 10541-10542, 2015.
    [30] C. Zener, "Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure," Physical Review, vol. 82, no. 3, pp. 403, 1951.
    [31] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, "Formability of ABX3 (X = F, Cl, Br, I) Halide Perovskites," Acta Crystallographica Section B: Structural Science, vol. 64, no. 6, pp. 702-707, 2008.
    [32] G. Xing, and N. Mathews, " Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nature Mater, vol. 13, pp. 476, 2014
    [33] D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J.-P. Ahn, J. W. Lee, and J. K. Song, "Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning," Nano letters, vol. 15, no. 8, pp. 5191-5199, 2015.
    [34] T. A. Driscoll, H. J. Hoffman, and R. E. Stone, "Efficient second-harmonic generation in KTP crystals," International series of monograhs on physics, vol. 3, no. 5, 1986
    [35] G. Binnig, Ch. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, "Atomic Resolution with Atomic Force Microscope," Europhysics Letters, vol. 3, no. 2, 1987.
    [36] 陳吉良, 林世明, 林良平, "原子力顯微鏡及其在微生物學上之應用," 科儀新知, 第二十五卷, 第四期, pp. 76-81, 2004.
    [37] 羅聖全, "科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)," 科學研習月刊, 2013.
    [38] 謝嘉民, 賴一凡, 林永昌, 枋志堯, "光激發螢光量測的原理、架構及應用," 科儀新知," 第二十六卷, 第六期, pp. 39~51,2005.
    [39] M. E. Sasin, R. P. Seisyan, M .A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, "Tamm plasmon-polaritons:First experimental observation," Superlattices, vol. 47, pp. 44-49, 2010.
    [40] E. Hecht, "Optics," Addison-Wesley, fifth edition, pp.437-623, 2016.

    無法下載圖示 校內:2025-10-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE