| 研究生: |
游志弘 Yu, Chih-Hung |
|---|---|
| 論文名稱: |
地表逕流與伏流水交換對水質特性相關性之探討 The Relation of the Exchange between Surface Water and Hyporheic Water to Water Quality Characteristics |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 五溝水湧泉濕地 、伏流水 、水質特性 、微測壓管 、通量 |
| 外文關鍵詞: | Wu Gou Shui spring-fed wetland area, hyporheic water, water quality characteristics, minipiezometer, flux |
| 相關次數: | 點閱:150 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伏流水對濕地生態棲地的影響深具重要性,不僅影響水中的化學及物理性質,亦可提供水生生物所需的養分,成為生態棲地不可或缺的一環。近幾年對伏流水如何使用議題討論熱烈,備援水資源(如:伏流水抽取)也逐漸發展,其中在台灣針對伏流水的部分較少被探討。本研究想藉由現地量測找出伏流水的上湧及下滲現象,探討其對地表逕流與伏流水水質的影響,透過多元尺度方法區分上湧及下滲處的水質群聚,以及主成分分析找出地表逕流水質特性的主要因子,往後可試圖從地表逕流水質特性去判斷上湧或下滲現象的出現位置。不僅能較易取得伏流水,亦能有效運用伏流水水量,在水質處理方面也有參考依據。研究區域位於屏東縣萬巒鄉東港溪中上游的五溝水湧泉濕地溪流,透過微測壓管量測垂直水力梯度判斷採樣點之上湧及下滲情況,使用微水試驗量測水力傳導度計算伏流水與地表逕流間交換的單位面積通量,採集地表逕流水與藉由幫浦吸取伏流水,利用水質儀器測量地表逕流水與伏流水水質。以大尺度的觀點,本研究發現興盛橋上游河段大部份區域呈現上湧現象,少部份區域出現下滲現象,沒發現上湧及下滲現象與潭瀨的分佈有特定相關;然而以小尺度的觀點,發現小區域河床底質因粗顆粒底質堆積使得水流方向改變,土壤壓力不均勻形成上湧及下滲現象,另外有部份區域呈平衡狀態表示伏流水與地表逕流交互作用在小區域作用頻繁。藉由獨立T檢定顯示上湧及下滲處之水質無明顯的差異性,因地表逕流流動快,故於上湧及下滲處水質特性較接近,以及伏流水於上湧及下滲處水質特性因滲透層特性相似而無差異性。地表逕流於上湧處水質因興盛橋上游段與五福橋下游段的滲透層特性不同而有差異性,且不排除聚落居民用水對地表逕流水質的影響,發現導電度及硝酸鹽濃度在五福橋下游段高於興盛橋上游段。藉由成對T檢定則顯示地表逕流與伏流水之水質有非常顯著差異性。最後,透過多元尺度方法及主成分分析水質特性,區分出上湧處、下滲處及湧泉窟,並找出地表逕流於上湧及下滲處的水質特性資料作為可依據的指標範圍,但指標範圍的準確性不高,可搭配微測壓管作為現地驗證,對往後研究伏流水的學者作為參考依據。
The effect of hyporheic water on wetland ecological habitat is important. The hyporheic processes not only impact physical and chemical characteristics of water but also provide needs to organisms in stream ecosystems. The exchange between surface water and hyporheic water was quantified by measuring the vertical hydraulic gradient (VHG) and streambed hydraulic conductivity (K) in minipiezometers by using the slug test. Physical and chemical characteristics of the surface water and hyporheic water were measured and analyzed. As a whole, most upwelling sites were observed in the upper reach at Xing Sheng Bridge. On a small scale, few downwelling sites contained large sediment in the streambed. The magnitude of downwelling sites was significantly higher than the magnitude of upwelling sites because of gravity and good permeability. Some neutral sites were observed with frequent interactions between surface water and hyporheic water in small areas. There were no differences in water quality characteristics of surface water and hyporheic water between upwelling sites and downwelling sites. There were differences in conductivity and nitrates at upwelling sites of surface water between the upper reach at Xing Sheng Bridge and the lower reach at Wu Fu Bridge. There were significantly different water quality characteristics between surface water and hyporheic water. We could distinguish upwelling and downwelling sites and find the main factors of water quality characteristics by analyzing water quality characteristics of surface water.
Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. Flow and storage in groundwater systems. science, 296(5575), 1985-1990. (2002)
Barwell, V., & Lee, D. R. Determination of horizontal‐to‐vertical hydraulic conductivity ratios from seepage measurements on lake beds. Water Resources Research, 17(3), 565-570. (1981)
Battin, T. J., Kaplan, L. A., Newbold, J. D., & Hendricks, S. P. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function*. Freshwater Biology, 48(6), 995-1014. (2003)
Baxter, C., Hauer, F. R., & Woessner, W. W. Measuring Groundwater–Stream Water Exchange: New Techniques for Installing Minipiezometers and Estimating Hydraulic Conductivity. Transactions of the American Fisheries Society,132(3),493-502. (2003)
Bencala, K. E. Hyporheic zone hydrological processes. Hydrological Processes, 14(15), 2797-2798. (2000)
Boulton, A. Stream ecology and surface-hyporheic hydrologic exchange: implications, techniques and limitations. Marine and Freshwater Research, 44(4), 553-564. (1993)
Boulton, A., Marmonier, P., & Davis, J. Hydrological exchange and subsurface water chemistry in streams varying in salinity in south-western Australia. International Journal of Salt Lake Research, 8(4), 361-382. (1999)
Boulton, A. J. River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosystem Health, 6(2), 108-118. (2000)
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59-81. (1998)
Brunke, M., & Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37(1), 1-33. (1997)
Claret, C., Marmonier, P., Boissier, J. M., fontvieille, D., & Blanc, P. Nutrient transfer between parafluvial interstitial water and river water: influence of gravel bar heterogeneity. Freshwater Biology, 37(3), 657-670. (1997)
Darcy, H. Les fontaines publiques de la ville de Dijon. Dalmont, Paris: Paris, Libraire des Corps Imperiaux des Ponts et Chaussées et des Mines. (1856)
Edwards, R. T. The hyporheic zone. River Ecology and Management. Springer, 399-429. (1998)
Fernald, A. G., Landers, D. H., & Wigington, P. J. Water quality changes in hyporheic flow paths between a large gravel bed river and off‐channel alcoves in Oregon, USA. River Research and Applications, 22(10), 1111-1124. (2006)
Fowler, R. T., & Scarsbrook, M. R. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel‐bed rivers. New Zealand Journal of Marine and Freshwater Research, 36(3), 471-482. doi: 10.1080/00288330.2002.9517102 (2002)
Franken, R. J. M., Storey, R. G., & Williams, D. D. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444(1-3), 183-195. doi: 10.1023/a:1017598005228 (2001)
Freeze, R. A., and Cherry, J. A. Groundwater. Englewood Cliffs, NJ: Prentice Hall. (1979)
Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manage, 10(2), 199-214. (1986)
Gariglio, F. P., Tonina, D., & Luce, C. H. Spatiotemporal variability of hyporheic exchange through a pool-riffle-pool sequence. Water Resources Research, 49(11), 7185-7204. doi: 10.1002/wrcr.20419 (2013)
Hancock, P. J. Human impacts on the stream-groundwater exchange zone. Environ Manage, 29(6), 763-781. doi: 10.1007/s00267-001-0064-5 (2002)
Hancock, P. J., Boulton, A. J., & Humphreys, W. F. Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeology Journal, 13(1), 98-111. (2005)
Hanrahan, T. P. Effects of river discharge on hyporheic exchange flows in salmon spawning areas of a large gravel-bed river. Hydrological Processes, 22(1), 127-141. doi: 10.1002/hyp.6605 (2008)
Harvey, J. W., & Fuller, C. C. Effect of enhanced manganese oxidation in the hyporheic zone on basin‐scale geochemical mass balance. Water Resources Research, 34(4), 623-636. (1998)
Hendricks, S. P. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. Journal of the North American Benthological Society, 70-78. (1993)
Jones J. B., J. and R. M. Holmes. Surface-subsurface interactions in stream ecosystems. 239-242. (1996)
Jones, J., Holmes, R. M., Fisher, S. G., & Grimm, N. B. Chemoautotrophic production and respiration in the hyporheic zone of a Sonoran Desert stream. (1994)
Malard F., K. T., M. Dole-olivier and J. V. Ward. A Landscape Perspective of Surface-subsurface Hydrological Exchanges in River Corridors. Freshwater Biology, 47, 621-640. (2002)
Malard F., K. T., M. Dole-olivier, J. Mathieu and F. Stoch Sampling manual for the assessment of regional groundwater biodiversity fifth framework programme key action. Global Change, Climate and Biodiversity Assessing and Conserving Biodiversity Contract, 2, 1-21. (2001)
Marmonier, P., Fontvieille, D., Gibert, J., & Vanek, V. Distribution of dissolved organic carbon and bacteria at the interface between the Rhône River and its alluvial aquifer. Journal of the North American Benthological Society, 382-392. (1995)
Olsen. D. A. and C. R. Townsend. Hyporheic Community Composition in Gravel-bed Stream: Influence of Vertical Hydrological Exchange, Sediment Structure and Physicochemistry. Freshwater Biology, 48, 1363-1378. (2003)
Orghidan, T., "Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop" , Hydrobiology, 55: 392-414 (1959)
Pfannkuch, H., & Winter, T. Effect of anisotropy and groundwater system geometry on seepage through lakebeds: 1. Analog and dimensional analysis. Journal of Hydrology, 75(1), 213-237. (1984)
Soulsby, C., Malcolm, I., Tetzlaff, D., & Youngson, A. Seasonal and inter‐annual variability in hyporheic water quality revealed by continuous monitoring in a salmon spawning stream. River Research and Applications, 25(10), 1304-1319. (2009)
Stanford, J. and J. V. W. An ecosystem perspective of alluvial rivers: Connectivity and the hyporheic corridor. Journal of the North American Benthological Society, 12, 48-60. (1993)
Tonina, D. and J. M. Buffington Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental Effects. Geography Compass, 1063-1086. (2009)
Toth, J. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68(16), 4795-4812. (1963)
Triska, F. J., Duff, J. H., & Avanzino, R. J. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial—aquatic interface Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers (pp. 167-184): Springer. (1993)
Valett, H. M., Fisher, S. G., Grimm, N. B., & Camill, P. Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology, 75(2), 548-560. (1994)
Valett, H. M., Fisher, S. G., Stanley, E. H. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. The North American Benthological Society, 201-215. (1990)
Valett, H. M., Hakenkamp, C. C., & Boulton, A. J. Perspectives on the hyporheic zone: integrating hydrology and biology. Introduction. Journal of the North American Benthological Society, 40-43. (1993)
Vaux, W. G. Interchange of stream and intragravel water in a salmon spawning riffle. US Fish and Wildlife Service Special Scientific Report, Fisheries, 405. (1962)
Vaux, W. G. Intragravel flow and interchange of water in a streambed. Fishery Bulletin, 66, 479-489. (1968)
Vervier, P., Gibert, J., Marmonier, P., & Dole-Olivier, M.-J. A perspective on the permeability of the surface freshwater-groundwater ecotone. Journal of the North American Benthological Society, 93-102. (1992)
Ward, J., Bretschko, G., Brunke, M., Danielopol, D., Gibert, J., Gonser, T., & Hildrew, A. The boundaries of river systems: the metazoan perspective. Freshwater Biology, 40(3), 531-569. (1998)
White, D. S. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 61-69. (1993)
Wondzell, S. M., & Swanson, F. J. Seasonal and storm dynamics of the hyporheic zone of a 4 th-order mountain stream. 2: Nitrogen cycling. Journal of the North American Benthological Society, 15(1), 20-34. (1996)
Wyatt, K. H., Hauer, F. R., & Pessoney, G. F. Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia, 607(1), 151-161. (2008)
林馳源. 伏流水對地表逕流水質與魚類影響之研究. 國立成功大學水利及海洋工程學系碩士論文. (2013)
金光球 & 李凌. 河流中潜流交换研究进展. 水科学进展, 19(2), 285-293. (2008).
胡俊锋, 王金生, & 滕彦国. 地下水与河水相互作用的研究进展. 水文地质工程地质, 31(1), 108-113. (2004)
袁兴中 & 罗固源. 溪流生态系统潜流带生态学研究概述. 生態學報, 23(5), 956-964. (2003)
滕彥國, 左銳, & 王金生. 地表水─地下水的交錯帶及其生態功能. 地球与环境,35(1), 1-8. (2007)