簡易檢索 / 詳目顯示

研究生: 買昱椉
Mai, Yu-Shen
論文名稱: 五環素薄膜初期成長機制研究
Early Stages of Pentacene Thin Film Growth on Dielectrics
指導教授: 鄭弘隆
Cheng, Horng-Long
周維揚
Chou, Wei-Yang
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 143
中文關鍵詞: 有機薄膜電晶體五環素拉曼成長模型
外文關鍵詞: organic thin film transistor, pentacene, growth model, Raman
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在氮氣、氫氣、氬氣、氦氣與高真空下成長pentacene薄膜,並以此材料為主動層製作有機薄膜電晶體。我們在真空度2×10-5 torr氮氣環境中成長pentacene,其電晶體元件載子遷移率約0.24 cm2/Vs;然而,在氫氣環境中成長pentacene得到的元件載子遷移率約0.008 cm2/Vs,推測在氮氣環境中成長的pentacene薄膜,有較好的分子排列結構。由atomic force microscope (AFM)掃瞄圖發現,其表面形貌出現樹枝狀結構,並且由X-ray diffraction (XRD)的量測結果發現pentacene平均結晶大小與元件載子遷移率有明顯關聯。
    接下來分別在表面能以及表面粗糙度類似的高分子材料「聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)」與SiO2表面成長pentacene,在這兩種表面成長的pentacene薄膜,都具有良好的結晶品質,然而成長在PMMA表面的pentacene晶粒明顯小很多。以PMMA當修飾層的有機薄膜電晶體,有非常好的電性表現,包括元件載子遷移率超過1.1 cm2/Vs,以及電流開關比大於106,次臨界斜率小於1 V/dec,並進一步利用共振拉曼光譜(Resonance Raman Spectroscope)的量測結果,解釋為何以PMMA當修飾層的有機薄膜電晶體,其電性表現如此優異。
    我們藉由XRD、AFM、接觸角量測儀(contact angle meter)、以及拉曼光譜,量測厚度從幾個分子單層到數百奈米的複晶系pentacene薄膜.,分析其隨厚度而變的結晶結構、表面形貌、表面自由能、以及分子微結構;由XRD的數據分析,並定義pentacene分子傾斜角(tilt angle, θtilt)為從分子c軸倒向a軸的角度,發現pentacene薄膜從正交晶相(orthorhombic phase)變化到薄膜相(thin-film phase),然後再到三斜晶系的塊材相(triclinic bulk phase)。並結合AFM以及薄膜接觸角量測隨著薄膜成長而變化的pentacene表面自由能與晶粒尺寸,來合理解釋隨著pentacene薄膜厚度變化的傾斜角,並提出pentacene初期成長模型。
    最後,不同膜厚的pentacene分子振動特性可以藉由拉曼光譜量測得到,再結合XRD與AFM可以讓我們解析pentacene薄膜中的分子微結構;並藉由pentacene薄膜出現在拉曼光譜中的晶場分裂(crystal field splitting)特性以及分析其C-C伸縮振動區的譜線半高寬來決定薄膜內的載子傳輸特性。我們認為初期成長的幾個pentacene分子單層由於其分子間作用力較弱,並且擁有較大的分子緩遲能(molecular relaxation energy),以及形成較多的晶粒邊界(grain boundary),以致於有較差的載子傳輸特性。

    Pentacene based thin-film transistors (TFTs) have been fabricated using pentacene films grown under various ambiences, such as N2, H2, Ar, He, and high vacuum. The field-effect mobility of 0.24 cm2/Vs was obtained from TFTs fabricated under 210-5 torr nitrogen ambience, however, the pentacene TFTs fabricated in hydrogen ambience under the same pressure yielded very poor mobility of 0.008 cm2/Vs. Pentacene films deposited by thermal evaporation in nitrogen ambience have a high degree of molecular ordering with larger dendritic grains without any surface modification on silicon oxide dielectric. A clean relation between field-effect mobility and X-ray diffraction (XRD) estimated crystallites size was obtained.
    Additionally, the pentacene thin films have fabricated on polymethylmethacrylate (PMMA) and on silicon dioxide dielectric surfaces with the similar surface energy and surface roughness. On both surfaces the pentacene films displayed the high crystal quality from XRD scans, although the film on PMMA with significantly smaller grain size. The pentacene-based transistors with PMMA exhibited excellent electrical characteristics, including high mobility of above 1.1 cm2/Vs, on/off ratio above 106, and sharp subthreshold slope below 1 V/dec. The analysis of molecular microstructure of the pentacene films provided a reasonable explanation for the high performance using resonance micro-Raman spectroscopy.
    Thickness-dependent crystal structure, surface morphology, surface free energy, and molecular structure and microstructure of a series of polycrystalline pentacene films with different film thickness ranging from several monolayers to the several hundred nanometers have been investigated using XRD, atomic force microscopy (AFM), contact angle meter, and Raman spectroscopy. XRD studies indicate that transformation behaviors of thin film polymorphs are from orthorhombic phase to thin-film phase and then to triclinic bulk phase as measured by the increased tilt angle (θtilt) of the pentacene molecule from the c axis toward the a-b lattice plane. We propose a growth model that rationalizes the θtilt increased with increasing film thickness in terms of grain size and surface free energy which vary with film growth measured by AFM combined with contact angle. The vibrational characterizations of pentacene molecules in different thickness films were investigated by Raman spectroscopy compared to density functional theory calculations of a free molecule. Combining XRD with AFM enables us to distinguish the molecular microstructures in different thin film polymorphs. We proposed a methodology to probe the microscopic parameters determining the carrier transport properties relating to crystal field splitting and half-width of aromatic C-C stretching modes in Raman spectra. The first few monolayer structures located at the dielectric surface could have inferior carrier transport properties due to weak intermolecular interactions, large molecular relaxation energy, and more grain boundaries as compared with triclinic bulk phase at high thickness.

    摘要 I Abstract III 致謝 VI 目次 VIII 表目錄 XII 圖目錄 XIII 第1章 有機薄膜電晶體理論與Pentacene薄膜成長機制 1 1.1 有機薄膜電晶體(Organic Thin Film Transistor, OTFT) 1 1.2 Pentacene簡介(Introduction of Pentacene) 10 1.3 有機薄膜電晶體特性公式(Device Characterization and Parameter Extraction) 13 1.4 有機半導體的傳輸機制(Carrier Transport Mechanism of Organic Semiconductor) 18 1.5 有機薄膜的成長機制(Organic Film Growth) 21 1.5.1 比較無機薄膜與有機薄膜的成長(Organic vs Inorganic Film Growth) 21 1.5.2 基板特性(Nature of the Substrate) 24 1.5.3 基板溫度及蒸鍍速率(Substrate Temperature and Deposition Rates) 25 第2章 有機半導體薄膜製備與量測 27 2.1 物理氣相沉積蒸鍍(Physical Vapor Deposition, PVD) 27 2.2 分子束磊晶系統(Molecular Beam Epitaxy, MBE) 30 2.3 有機電晶體之電性量測(Electric characteristics of OTFT) 34 2.4 有機半導體薄膜層之分析(Measurements and Analysis of Organic Semiconductor Thin Film) 34 2.4.1 原子力顯微鏡系統(Atomic Force Microscopre) 35 2.4.2 X-ray繞射量測系統與pentacene晶格參數(X-ray Diffraction and Pentacene Lattice Constant) 37 2.4.3 表面能之量測(Surface Energy Measurements) 42 2.4.4 拉曼散射量測系統與Davydov splitting (Raman Scattering and Davydov splitting) 45 第3章 不同氣體環境中成長之有機薄膜電晶體 54 3.1 前言(Introduction) 54 3.2 樣品製備與實驗步驟(Experiments) 55 3.3 實驗結果與討論(Results and Discussion) 56 3.4 結論(Summary) 61 第4章 pentacene分子結構與分子微結構對有機電晶體之影響 69 4.1 前言(Introduction) 69 4.2 樣品製備與實驗步驟(Experiments) 71 4.3 實驗結果與討論(Results and Discussion) 72 4.4 結論(Summary) 77 第5章 與pentacene複晶薄膜載子傳輸相關的薄膜結構演化以及成長模型之研究 82 5.1 前言(Introduction) 82 5.2 樣品製備與實驗步驟(Experiments) 86 5.3 實驗結果與討論(Results and Discussion) 87 5.3.1 由pentacene厚度不同所導致的晶格結構變化(Thickness-Driven Crystal Structure Transformations) 87 5.3.2 Pentacene薄膜的表面形態與特性(Surface Morphology and Surface Properties of Pentacene films) 90 5.3.3 Pentacene薄膜的成長模型(Growth Model of Pentacene on Substrate) 92 5.3.4 Pentacene薄膜中的分子振動特性(Molecular vibrational characterizations of pentacene thin films) 94 5.3.5 Pentacene分子微結構與微觀載子傳輸特性的關係(Related microscopic carrier transport properties) 99 5.4 結論(Summary) 107 第6章 總結與未來研究的方向 125 6.1 總結(Conclusions) 125 6.2 未來的研究方向(Future Studies) 129 參考文獻 132 附錄A 相關著作 A-1 附錄B 個人簡歷 B-1

    [1]. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and Alan G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett., 39, 1098 (1977).
    [2]. W. Y. Chou and H. L. Cheng, “An Orientation-Controlled Pentacene Film Aligned by Photoaligned Polyimide for Organic Thin-Film Transistor Applications”, Adv. Funct. Mater., 14, 811 (2004).
    [3]. M. Ichimura, S. H. Noh, T. Ishibashi, N. Ueda and S. Tamura, “High performance OLED panels for Sony CLIE PDA: development of red emitter and super top emission structure” Proceedings of the SPIE, 5937, 593703 (2005).
    [4]. P. Peumans, S. Uchida and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films“, Nature, 425, 158 (2003).
    [5]. Y. Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju and H. E. Katz, “Organic complementary ring oscillators”, Appl. Phys. Lett., 74, 2714 (1999).
    [6]. F. Garnier, R. Hajlaoui, A. Yassar and P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science, 265, 1684 (1994).
    [7]. C. D. Dimitrakopoulos, A. R. Brown and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications”, J. Appl. Phys., 80, 2501 (1996).
    [8]. S. H. Kim, Y. S. Yang, J. H. Lee, J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do and T. Zyung, “Organic field-effect transistors using perylene”, Opt. Mater., 21, 439 (2003).
    [9]. W. Warta and N. Karl, “Hot holes in naphthalene: High, electric-field-dependent mobilities”, Phys. Rev. B, 32, 1172 (1985).
    [10]. L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung and H. E. Katz, “Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors “, Science, 272, 1462 (1996).
    [11]. T. Holstein, “Studies of polaron motion, Part II. The “small” polaron”, Ann. Phys., 8, 343 (1959).
    [12]. S. Kojima, ”Low-frequency Raman investigation of the liquid-glass transition in glycerol”, Phys. Rev. B, 47, 2924 (1993).
    [13]. E. M. Conwell, H. Y. Choi and S. Jeyadev, “Transverse polaron bandwidth in trans-polyacetylene”, J. Phys. Chem., 96, 2827 (1992).
    [14]. J. H. Schön, C. Kloc and B. Batlogg, “Low-temperature transport in high-mobility polycrystalline pentacene field-effect transistors”, Phys. Rev. B, 63, 125304 (2001).
    [15]. W. Brütting and Wolfgang, “Physics of organic semiconductors”, Wiley-VCH, Weinheim (2005).
    [16]. R. G. D. Valle, A. Brillante, E. Venuti, L. Farina, A. Girlando and M. Masino, “Exploring the polymorphism of crystalline pentacene”, Org. Electron., 5, 1 (2004).
    [17]. C. C. Mattheus, G. A. de Wijs, R. A. de Groot and T. T. M. Palstra, “Modeling the Polymorphism of Pentacene”, J. Am. Chem. Soc., 125, 6323 (2003).
    [18]. G. R. Desiraju and A. Gavezzotti, “Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure”, Acta Crystallogr. Sec. B, 45, 473 (1989).
    [19]. S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, “Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction”, J. Am. Chem. Soc., 126, 4084 (2004).
    [20]. L. F. Drummy and D. C. Martin, “Thickness-Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films”, Adv. Mater., 17, 903 (2005).
    [21]. R. Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, “Thickness Dependence of Mobility in Pentacene Thin-Film Transistors”, Adv. Mater., 17, 1795 (2005).
    [22]. T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones, “High performance organic thin film transistors”, Mater. Res. Soc. Symp. Proc., 771, 169 (2003).
    [23]. C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer and T. T. M. Palstra, “Polymorphism in pentacene”, Acta Crystallogr. sec. C, 57, 939 (2001).
    [24]. E. Venuti, R.G. Della Valle, A. Brillante, M. Masino and A. Girlando, “Probing Pentacene Polymorphs by Lattice Dynamics Calculations”, J. Am. Chem. Soc., 124, 2128 (2002).
    [25]. J. Cornil, J. Ph. Calbert and J. L. Brédas, “Electronic Structure of the Pentacene Single Crystal: Relation to Transport Properties”, J. Am. Chem. Soc. 123, 1250 (2001).
    [26]. Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil, and J. L. Brédas, “Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation”, J. Chem. Phys. 118, 3764 (2003).
    [27]. S. M. Sze, “Semiconductor Devices: Physics and Technology” 2nd editon, Wiley, New York, p.187 (2001).
    [28]. R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models”, J. Chem. Phys., 44, 3797 (1966).
    [29]. N. B. Zhitenev, H. Meng and Z. Bao, “Conductance of Small Molecular Junctions”, Phys. Rev. Lett., 88, 226801 (2002).
    [30]. S. Verlaak, V. Arkhipov and P. Heremans, “Modeling of transport in polycrystalline organic semiconductor films”, Appl. Phys. Lett., 82, 745 (2003).
    [31]. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, “Pentacene Thin Film Growth”, Chem. Mater., 16, 4497 (2004).
    [32]. J. A. Venables, G. D. T. Spiller and M. Hanbucken, “Nucleation and growth of thin films”, Rep. Prog. Phys., 47, 399 (1984).
    [33]. N. Karl, “Charge carrier transport in organic semiconductors”, Synth. Met., 133-134, 649 (2003).
    [34]. J. A. Last, A. C. Hillier, D. E. Hooks, J. B. Maxson and M. D.Ward, “Epitaxially Driven Assembly of Crystalline Molecular Films on Ordered Substrates”, Chem. Mater., 10, 422 (1998).
    [35]. F.-J. Meyer Zu Heringdorf, M. C. Reuter and R. M. Tromp, ”Growth dynamics of pentacene thin films”, Nature, 412, 517 (2001).
    [36]. J. H. Kang and X. Y. Zhu, “Pi-stacked pentacene thin films grown on Au(111)”, Appl. Phys. Lett., 82, 3248 (2003).
    [37]. R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund, A. Kahn and G. Scoles, “Pentacene ultrathin film formation on reduced and oxidized Si surfaces”, Phys. Rev. B, 67, 125406 (2003).
    [38]. S. R. Forrest, ”Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques”, Chem. Rev., 97, 1793 (1997).
    [39]. S. Verlaak, S. Steudel, P. Heremans, D. Janssen and M. S. Deleuze, ”Nucleation of organic semiconductors on inert substrates”, Phys. Rev. B, 68, 195409 (2003).
    [40]. J. E. Northrup, M. L. Tiago and S. G. Louie, “Surface energetics and growth of pentacene”, Phys. Rev. B, 66, 121404 (2002).
    [41]. C. B. France, P. G. Schroeder, J. C. Forsythe and B. A. Parkinson, “Scanning Tunneling Microscopy Study of the Coverage-Dependent Structures of Pentacene on Au(111)”, Langmuir, 19, 1274 (2003).
    [42]. P. Guaino, D. Carty, G. Hughes, P. Moriarty and A. A. Cafolla, “Scanning tunneling microscopy study of pentacene adsorption on Ag/Si(1 1 1)-( )R30°”, Appl. Surf. Sci., 212-213, 537 (2003).
    [43]. K. P. Weidkamp, C. A.Hacker, M. P. Schwartz, X. P. Cao, R. M. Tromp and R. J. Hamers, “Interfacial Chemistry of Pentacene on Clean and Chemically Modified Silicon (001) Surfaces”, J. Phys. Chem. B, 107,11142 (2003).
    [44]. N. Koch, A. Elschner, J. Schwartz and A. Kahn, “Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics”, Appl. Phys. Lett., 82, 2281 (2003).
    [45]. P. G. Schroeder, C. B. France, J. B. Park and B. A. Parkinson, “Orbital Alignment and Morphology of Pentacene Deposited on Au(111) and SnS2 Studied Using Photoemission”, J. Phys. Chem. B, 107, 2253 (2003).
    [46]. D. Choudhary, P. Clancy, R. Shetty and F. Escobedo, “A Computational Study of the Sub-monolayer Growth of Pentacene”, Adv. Funct. Mater., 16, 1768 (2006).
    [47]. J. G. Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur, “Morphological Origin of High Mobility in Pentacene Thin-Film Transistors”, Chem. Mater., 8, 2542 (1996).
    [48]. R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund Jr., A. Kahn, F. Family and G. Scoles, “Dynamic Scaling, Island Size Distribution, and Morphology in the Aggregation Regime of Submonolayer Pentacene Films”, Phys. Rev. Lett., 91, 136102 (2003).
    [49]. M. Shtein, J. Mapel, J. B. Benziger and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors”, Appl. Phys. Lett., 81, 268 (2002).
    [50]. D. Knipp, R. A. Street, A. Volkel and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys., 93, 347 (2003).
    [51]. I. P. M. Bouchoms, W. A. Schoonveld, Vrijmoeth, J. and T. M. Klapwijk, “Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates”, Synth. Met., 104, 175 (1999).
    [52]. T. Jentzsch, H. J. Juepner, K.-W. Brzezinka and A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure”, Thin Solid Films, 315, 273 (1998).
    [53]. 葉佳元, “不同氣體環境下五環素薄膜成長機制之研究”, 碩士論文, 國立成功大學 (2005).
    [54]. C. Kittel, “Introduction to Solid State Physics” 7th edition, Wiley, New York, p. 70 (1996).
    [55]. L. E. Alexander, “X-ray Diffraction Methods in polymer science”, Wiley, New York, p. 429 (1969).
    [56]. J. N. Israelachvili, “Intermolecular and surface forces” 2nd edition, Academic Press, London, UK, (1992).
    [57]. John R. Ferraro, Kazua Nakamoto, Chris W. Brown, “Introductory Raman spectroscopy” 2nd edition, Academic Press, Boston, p. 17 (2003).
    [58]. A. S. Davydov, “Theory of Molecular Excitons”, McGraw-Hill, New York, p. 21 (1971).
    [59]. T. M. K. Nedungadi, “Conical refraction in naphthalene crystals”, Proc. Indian Acad. Sci., 14, 221 (1941)
    [60]. L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti and G. Strazzulla, “Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest”, Astrophys. J., 396. 369 (1992).
    [61]. C.D. Dimitrakopoulos and P.R.L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Adv. Mater., 14, 99 (2002).
    [62]. D. J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson and D.G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility”, IEEE Electron Dev. Lett., 18, 87 (1997).
    [63]. T. Kakudate, N. Yoshimoto and Y. Saito, “Polymorphism in pentacene thin films on SiO2 substrate”, Appl. Phys. Lett., 90, 081903 (2007)
    [64]. H. L. Cheng, W. Y. Chou, C. W. Kou, F. C. Tang and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy”, Appl. Phys. Lett., 88, 161918 (2006).
    [65]. W. Y. Chou, C. W. Kou, H. L. Cheng, Y. S. Mai, F. C. Tang, S. T. Lin, C. Y. Yeh, J. B. Horng, C. T. Chia, C. C. Liao and D. Y. Shu, J. Appl. Phys., 99, 114511 (2006).
    [66]. P. M. Rabinson and H. G. Scott, “The morphology of anthracene crystals“, J. Cryst. Growth, 1, 187 (1967).
    [67]. R. Hosemann, A. M. Hindeleh, “Structure of crystalline and paracrystalline condensed matter”, J. Macromol Sci-Phys. B34, 327 (1995).
    [68]. P. V. Pesavento, R. J. Chesterfield, C. R. Newman and C. D. Frisbie, “Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature”, J. Appl. Phys., 96, 7312 (2004).
    [69]. A. Di Carloa, F. Piacenza, A. Bolognesi, B. Stadlober and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors “, Appl. Phys. Lett., 86, 263501 (2005).
    [70]. Y. Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, “Pentacene-based organic thin-film transistors”, IEEE Trans. Electron Devices, 44, 1325 (1997).
    [71]. G. Horowitz, “Tunneling Current in Polycrystalline Organic Thin-Film Transistors”, Adv. Funct. Mater., 13, 53 (2003)
    [72]. W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu and C. C. Liao, “Effect of surface free energy in gate dielectric in pentacene thin-film transistors”, Appl. Phys. Lett., 89, 112126 (2006).
    [73]. S. Y. Yang, K. Shin and C. E. Park, “The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics”, Adv. Funct. Mater., 15, 1806 (2005).
    [74]. T. Minakata, H. Imai, M. Ozaki and K. Saco, “Structural studies on highly ordered and highly conductive thin films of pentacene”, J. Appl. Phys., 72, 5220 (1992).
    [75]. B. Stadlober, U. Haas, H. Maresch and A. Haase, “Growth model of pentacene on inorganic and organic dielectrics based on scaling and rate-equation theory”, Phys. Rev. B, 74, 165302 (2006).
    [76]. D. Faltermeier, B. Gompf, M. Dressel, A. K. Tripathi and J. Pflaum, “Optical properties of pentacene thin films and single crystals”, Phys. Rev. B, 74, 125416 (2006).
    [77]. O. Kwon, V. Coropceanu, N. E. Gruhn, J. C. Durivage, J. G. Laquindanum, H. E. Katz, J. Cornil and J. L. Brédas, “Characterization of the molecular parameters determining charge transport in anthradithiophene”, J. Chem. Phys., 120, 8186 (2004).
    [78]. H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. S. Mai, F. C. Tang and S. H. Lai, “Studies of polycrystalline pentacene thin-film transistors at the microscopic level”, Proc. SPIE-Int. Soc. Opt. Eng., 6336, 6336-48 (2006).
    [79]. B. Toudic, P. Limelette, G. Froyer, F. Le Gac, A. Moréac and P. Rabiller, “Structural Organization of π Conjugated Highly Luminescent Molecular Material”, Phys. Rev. Lett., 95, 215502 (2005).
    [80]. G. Gu, M. G. Kane, J. E. Doty and A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, Appl. Phys. Lett., 87, 243512 (2005).
    [81]. S. Uemura, A. Komukai, R. Sakaida, T. Kawai, M. Yoshida, S. Hoshino, T. Kodzasa and T. Kamata, “The organic FET with poly(peptide) derivatives and poly(methyl-methacrylate) gate dielectric”, Syn. Met., 153, 405 (2005).
    [82]. F. De Angelis, S. Cipolloni, L. Mariucci and G. Fortunato, “High-field-effect-mobility pentacene thin-film transistors with polymethylmetacrylate buffer layer”, Appl. Phys. Lett., 86, 203505 (2005).
    [83]. JM Lehn, “Supramolecular chemistry”, Science, 260, 1762 (1993).
    [84]. S. Pratontep, F. Nüesch, L. Zuppiroli and M. Brinkmannl, “Comparison between nucleation of pentacene monolayer islands on polymeric and inorganic substrates”, Phys. Rev. B, 72, 085211 (2005).
    [85]. G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater., 10, 365 (1998).
    [86]. A. C. Mayer, A. Kazimirov and G. G. Malliaras, “Dynamics of Bimodal Growth in Pentacene Thin Films”, Phys. Rev. Lett., 97, 105503 (2006).
    [88]. D. Holmes, S. Kumaraswamy, A. J. Matzger and K. P. C. Vollhardt, “On the Nature of Nonplanarity in the [N] Phenylenes”, Chem. Eur. J., 5, 3399 (1999).
    [88]. C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. De Boer and T. T. M. Palstra, “Polymorphism in pentacene”, Acta Crystallogr. sec. C, 57, 939 (2001).
    [89]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors”, J. Appl. Phys., 53, 1193 (1982).
    [90]. R. A. Street, D. Knipp and A. R. Völkel, “Hole transport in polycrystalline pentacene transistors”, Appl. Phys. Lett., 80, 1658 (2002).
    [91]. Y. W. Wang, H. L. Cheng, Y. K. Wang, T. H. Hu, J. C. Ho, C. C. Lee, T. F. Lei and C. F. Yeh, “Influence of measuring environment on the electrical characteristics of pentacene-based thin film transistors”, Thin Solid Films, 467, 215 (2004).
    [92]. A. Brillante, I. Bilotti, R. G. D. Valle, E. Venuti, M. Masino and A. Girlando, “Characterization of Phase Purity in Organic Semiconductors by Lattice-Phonon Confocal Raman Mapping: Application to Pentacene”, Adv. Mater., 17, 2549 (2005).
    [93]. M. H. Choo, J. H. Kim and S. Im, “Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors”, Appl. Phys. Lett., 81, 4640 (2002).
    [94]. W. Y. Chou, Y. S. Mai, H. L. Cheng, C. Y. Yeh, C. W. Kuo, F. C. Tang, D. Y. Shu, T. R. Yew and T. C. Wen, “Correlation of growth of pentacene films at various gas ambience conditions to organic field-effect transistor characteristics”, Org. Electron., 7, 445 (2006).
    [95]. H. L. Cheng, Y. S. Mai, W. Y. Chou and L. R. Chang, “Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors”, Appl. Phys. Lett., 90, 171926 (2007).
    [96]. V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T. G. Bill and J. L. Brédas, “Hole- and Electron-Vibrational Couplings in Oligoacene Crystals: Intramolecular Contributions”, Phys. Rev. Lett., 89, 275503 (2002).
    [97]. M. J. Frisch et al., Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh, PA, 2003.
    [98]. A. Brillante, R. G. Della Valle, L. Farina, A. Girlando, M. Masino and E. Venuti, “Raman phonon spectra of pentacene polymorphs”, Chem. Phys. Lett., 357, 32 (2002).
    [99]. L. Farina, A. Brillante, R.G. Della Valle, E. Venuti, M. Amboage and K. Syassen, “Pressure-induced phase transition in pentacene”, Chem. Phys. Lett., 375, 490 (2003).
    [100]. M. Rumi, G. Zerbi, K. Müllen and G. Müller and M. Rehahn, “Nonlinear optical and vibrational properties of conjugated polyaromatic molecules”, J. Chem. Phys., 106, 24 (1997).
    [101]. D. Ross and R. Aroca, “Effective medium theories in surface enhanced infrared spectroscopy: The pentacene example”, J. Chem. Phys., 117, 8095 (2002).
    [102]. R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc and A. Ron, “Resonant Raman scattering in nanoscale pentacene films”, Appl. Phys. Lett., 84, 987 (2004).
    [103]. A. P. Scott and L. Radom, “Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, MØller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors”, J. Phys. Chem., 100, 16502 (1996).
    [104]. M. Pope and C. E. Swenberg, “Electronic Processes in Organic Crystals and Polymers” 2nd edition, Oxford University Press, Oxford, p. 337~340 (1999).
    [105]. M. Bixon and J. Jortner, “Advances in Chemical Physics, Electron Transfer: From Isolated Molecules to Biomolecules”, Wiley, New York, p. 106-107 (2001).
    [106]. A. Weinstein and R. Zallen, “Light Scattering in Solids IV”, Springer, Berlin, p. 500 (1984).
    [107]. C. E. Bonner, C. C. Chess, C. Meegoda, S. Stefanos and G. B. Loutts, “Volume effects on the Raman frequencies of phosphate ions in fluorapatite crystals”, Opt. Mater., 26, 17 (2004).
    [108]. J. Cornil, D. A. Dossantos, X. Crispin, R. Silbey and J. L. Brédas, “Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated Oligomers and Polymers: A Quantum-Chemical Characterization”, J. Am.Chem. Soc., 120, 1289 (1998).
    [109]. J. Cornil, D. Beljonne, J. P. Calbert and J. L.Brédas, “Interchain Interactions in Organic π-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport”, Adv. Mater., 13, 1053 (2001).
    [110]. P. J. Brown, D. S. Thomas, A. nna Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene)”, Phys. Rev. B, 67, 064203 (2003).
    [111]. S. T. Bromley, M. Mas-Torrent, P. Hadley and C. Rovira, “Importance of Intermolecular Interactions in Assessing Hopping Mobilities in Organic Field Effect Transistors: Pentacene versus Dithiophene-tetrathiafulvalene”, J. Am. Chem. Soc., 126, 6544 (2004).
    [112]. F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini and D. M. D. Leeuw, “Spatially Correlated Charge Transport in Organic Thin Film Transistors”, Phys. Rev. Lett., 92, 116802 (2004).
    [113]. M. Kiguchi, M. Nakayama, K. Fujiwara, K. Ueno, T. Shimada and K. Saiki, “Accumulation and Depletion Layer Thicknesses in Organic Field Effect Transistors”, Jpn. J. Appl. Phys., 42, L1408 (2003).
    [114]. P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility”, J. Appl. Phys., 99, 094504 (2006).
    [115]. 陳儒賢, “不同介電材料之表面能對pentacene複晶薄膜所產生之應力的研究”, 碩士論文, 國立成功大學 (2006).

    下載圖示 校內:2009-07-17公開
    校外:2012-07-17公開
    QR CODE