| 研究生: |
賴穎暄 Lai, Ying-Xuan |
|---|---|
| 論文名稱: |
以受束制之移動最小二乘法求解柏松方程式 Constrained Moving Least Square Method for Solving Poisson's Equations |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 移動最小二乘法 、無元素法 、柏松方程式 |
| 外文關鍵詞: | moving least square method, meshless method, Poisson’s equations |
| 相關次數: | 點閱:46 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用受束制之移動最小二乘法分析二維柏松方程式包括穩態熱傳問題及理想流體問題。本文方法在建立局部近似函數的同時,使其滿足控制方程式及邊界條件,利用移動最小二乘法,考慮節點上函數之殘值,建立殘值二次式,使其最小化,可得到以節點上函數值表示之近似函數,再利用各節點函數值之一致性條件以及置點法建立聯立方程式求解。
數值範例中求解了各種不同邊界條件之柏松方程式問題,將數值結果與解析解進行比較,驗證本文方法之精度及收斂率,並探討了不同邊界條件對數值精度之影響。
In this thesis, the constrained moving least square method is adopted to solve the two-dimensional Poisson’s equations, including the steady-state heat transfer and ideal fluid problems. The feature of this approach is that, by adding suitable constraints with the help of the moving least square approach, the approximate function is constrained to fit the governing equation and boundary conditions. Moreover, the weighted sum of the residuals, which results from the approximation of the field variable, is attempted to be minimized so that the process leads to an interpolation function which is expressed in terms of nodal value of the field variable. The point collocation technique is then introduced to determine the unknown nodal values.
In the numerical examples, the Poisson’s equations with different boundary conditions are solved and compared with the exact solutions to examine the accuracy and the rate of convergence of the present method. Moreover the influences of boundary conditions to the numerical accuracy are discussed.
[1] L. B. Lucy (1977), “A numerical approach to the testing of the fission hypothesis”,The Astron, J.8, 12, pp1013-1024.
[2] B. Nayroles, G. Touzot and P. Villon(1992), “Generalizing the finite element method diffuse approximation and diffuse elements”, Computational Mechanics, 10,pp 307-318.
[3] T. Belytschko, L. Gu and Y. Y. Lu (1994), “Fracture and crack growth by element-free Galerkin methods”, Modeling and Simulation in Materials Science
and Engineering.2 , pp519-534.
[4] T. Belytschko, Y. Y. Lu (1995), “Element-free galerkin methods for static and dynamic fraxture”,Internationl Journal of Solids and Structures 32,2547-2570.
[5] W. K. Liu, S. Jun and Y. F. Zhang(1995),“Reproducing kernel particle methods”,Int. J. Numerical methods Engineering, 20, pp1081-1106.
[6] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco(1996), “A stabilized finite point method for analysis of fluid mechanics problems”,Computer Methods in Applied Mechanics & Engineering, 139, pp315-346.
[7] 盛若磐(2000), 元素釋放法積分法則與權函數之改良, 近代工程計算論壇論文集, 國立中央大學土木系。
[8] S.Li,W.Hao,W.K.Liu(2000) ,“Numeriacl simulations of large deformation of thin shell structures using meshfree methods”,Computational Mechanics,25,pp.102
-116.
[9] J. Wang, K.M. Liew, M.J. Tan, and S.Rajendran(2002),“Analysis of rectangular laminated composite plates via FSDT meshless method”,J.Mechanical Sciences 44,pp.1275-1293.
[10] Schembri Philip, Crane David L, J.N. Reddy (2004),“A three-dimensional computational procedure for reproducing meshless methods and the finite element method [for 3D linear elastic structural mechanics problems]”, International Journal for Numerical Methods in Engineering61.6, pp.896-927.
[11] 曾清紅,盧德唐(2005),耦合径向基函数與多項式基函数的無網格方法,計算物理22.1,pp.43-50。
[12] Shih-Wei Yang, Yung-Ming Wang, Chih-Ping Wu (2009),“A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli--Euler beams and Kirchhoff--Love plates”, Computational Mechanics45.1, pp.425-453.
[13] Shih-Wei Yang, Yung-Ming Wang, Chih-Ping Wu (2010),“A meshless Collocation Method Based on the Differential Reproducing Kernel Approximation”, CMES 60, pp.1-39.
[14] Yung-Ming Wang, Syuan-Mu Chen , Chih-Ping Wu (2010),“A meshless collocation method based on the differential reproducing kernel interpolation”, Computational Mechanics 45, pp.585-606.
[15] Chih-Ping Wu, Kuan-Hao Chiu, Yung-Ming Wang (2011),“RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates”, Composite Structures93.2, pp.923-943.
[16]黃建碩(2010),最小移動二乘法,國立成功大學土木工程研究所碩士論文。
[17]徐靖為(2011),齊次基底移動最小二乘法在複合桿件扭轉上之應用,國立成功大學土木工程研究所碩士論文。
[18] 郭曜琪(2006),以區域多元二次微分積分法求解卜易松、赫姆霍茲特徵值與穴室流場問題,國立台灣大學土木工程研究所碩士論文。
[19] Hui Wang ,Qing-Hua Qin (2007),“Some Problems with the Method of Fundamental Solution Using Radial Basis Functions”, Acta Mechanica Solida Sinica20.1, pp.21-29.
[20] Hui Wang , Jia-Lin Zhu, Xin Lin, Yong-Xing Zhang (2007),“Solution to the Poisson Equation by the Boundary Node Method”, 重慶大學學報(自然科學版)
30.12, pp.84-88.
[21] Bernard B. T. Kee , G. R. Liu ,C. Lu (2007),“A regularized least-squares radial point collocation method(RLS-RPCM) for adaptive analysis”, Comput Mech 40, pp.837-853.
[22] Lee C.; Park S.-H.; Jung H.-K.; Kim D.W.; Kim H.-K.; Im C.-H (2008),“Point collocation mesh-free method using FMLSRKM for solving axisymmetric Laplace equation”, IEEE Transactions on Magnetics 44.6, pp.1234-1237.
[23] 孟廣東,姚林泉(2009),徑向基函数局部插值的加權最小二乘配點法,蘇州大學學報(自科版)25.2,pp.15-20。
[24] Xing Wei ,Wen Chen , Zhuo-Jia Fu (2013),“Solving Inhomogeneous Problems by Singular Boundary Method”, Journal of Marine Science and Technology21.1, pp.8-14.
[25] T.Belytschko,Y.Krongauz,D. Organ,M. Fleming and P. Krysl(1996),“An overview and recent developments”,computer methods in applied mechanics & engineering,139,3-47.
[26] P.Krysl and T.Belytschko(2001),“a library to computer the element free galerkin shape functions”,computer methods in applied mechanics engineering,190,2181-2205.
[27] 屠傳經,沈珞嬋,吳子靜(1989),熱傳導,高等教育出版社,pp.12-13。
[28] 黃文雄(1985),熱傳學,國立編譯館,pp.74-84。
[29] 莊書豪,姜太倫(1995),流體力學/Frank M.White,高立圖書,pp.588-591。