簡易檢索 / 詳目顯示

研究生: 賴穎暄
Lai, Ying-Xuan
論文名稱: 以受束制之移動最小二乘法求解柏松方程式
Constrained Moving Least Square Method for Solving Poisson's Equations
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 113
中文關鍵詞: 移動最小二乘法無元素法柏松方程式
外文關鍵詞: moving least square method, meshless method, Poisson’s equations
相關次數: 點閱:46下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用受束制之移動最小二乘法分析二維柏松方程式包括穩態熱傳問題及理想流體問題。本文方法在建立局部近似函數的同時,使其滿足控制方程式及邊界條件,利用移動最小二乘法,考慮節點上函數之殘值,建立殘值二次式,使其最小化,可得到以節點上函數值表示之近似函數,再利用各節點函數值之一致性條件以及置點法建立聯立方程式求解。
    數值範例中求解了各種不同邊界條件之柏松方程式問題,將數值結果與解析解進行比較,驗證本文方法之精度及收斂率,並探討了不同邊界條件對數值精度之影響。

    In this thesis, the constrained moving least square method is adopted to solve the two-dimensional Poisson’s equations, including the steady-state heat transfer and ideal fluid problems. The feature of this approach is that, by adding suitable constraints with the help of the moving least square approach, the approximate function is constrained to fit the governing equation and boundary conditions. Moreover, the weighted sum of the residuals, which results from the approximation of the field variable, is attempted to be minimized so that the process leads to an interpolation function which is expressed in terms of nodal value of the field variable. The point collocation technique is then introduced to determine the unknown nodal values.
    In the numerical examples, the Poisson’s equations with different boundary conditions are solved and compared with the exact solutions to examine the accuracy and the rate of convergence of the present method. Moreover the influences of boundary conditions to the numerical accuracy are discussed.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1前言 1 1.2無元素法的發展 1 1.3本文架構 3 第二章 控制方程式 5 2.1二維穩態熱傳導問題 5 2.2 二維理想流體 6 第三章 移動最小二乘法理論 8 3.1以微分方程式為限制條件之最小二乘法 9 3.2以微分方程式為限制條件之最小二乘法應用於柏松方程式 10 第四章 數值分析結果 14 4.1固體內部穩態之溫度分佈 14 4.1.1無熱源之矩形斷面(第一類邊界) 14 4.1.2無熱源之矩形斷面(第一、二類邊界混和) 16 4.1.3有熱源之矩形斷面 16 4.1.4有熱源之圓形斷面 17 4.1.5有熱源之圓形斷面 18 4.2二維理想流體通過無限長圓柱 19 4.2.1均勻流通過無環流之圓柱 21 4.2.2均勻流通過有環流之圓柱(單一停滯點在圓柱上) 23 4.2.3均勻流通過有環流之圓柱(單一停滯點在圓柱外) 23 4.2.4改變邊界設定 24 第五章 結論 25 參考文獻 26

    [1] L. B. Lucy (1977), “A numerical approach to the testing of the fission hypothesis”,The Astron, J.8, 12, pp1013-1024.
    [2] B. Nayroles, G. Touzot and P. Villon(1992), “Generalizing the finite element method diffuse approximation and diffuse elements”, Computational Mechanics, 10,pp 307-318.
    [3] T. Belytschko, L. Gu and Y. Y. Lu (1994), “Fracture and crack growth by element-free Galerkin methods”, Modeling and Simulation in Materials Science
    and Engineering.2 , pp519-534.
    [4] T. Belytschko, Y. Y. Lu (1995), “Element-free galerkin methods for static and dynamic fraxture”,Internationl Journal of Solids and Structures 32,2547-2570.
    [5] W. K. Liu, S. Jun and Y. F. Zhang(1995),“Reproducing kernel particle methods”,Int. J. Numerical methods Engineering, 20, pp1081-1106.
    [6] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco(1996), “A stabilized finite point method for analysis of fluid mechanics problems”,Computer Methods in Applied Mechanics & Engineering, 139, pp315-346.
    [7] 盛若磐(2000), 元素釋放法積分法則與權函數之改良, 近代工程計算論壇論文集, 國立中央大學土木系。
    [8] S.Li,W.Hao,W.K.Liu(2000) ,“Numeriacl simulations of large deformation of thin shell structures using meshfree methods”,Computational Mechanics,25,pp.102
    -116.
    [9] J. Wang, K.M. Liew, M.J. Tan, and S.Rajendran(2002),“Analysis of rectangular laminated composite plates via FSDT meshless method”,J.Mechanical Sciences 44,pp.1275-1293.
    [10] Schembri Philip, Crane David L, J.N. Reddy (2004),“A three-dimensional computational procedure for reproducing meshless methods and the finite element method [for 3D linear elastic structural mechanics problems]”, International Journal for Numerical Methods in Engineering61.6, pp.896-927.
    [11] 曾清紅,盧德唐(2005),耦合径向基函数與多項式基函数的無網格方法,計算物理22.1,pp.43-50。
    [12] Shih-Wei Yang, Yung-Ming Wang, Chih-Ping Wu (2009),“A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli--Euler beams and Kirchhoff--Love plates”, Computational Mechanics45.1, pp.425-453.
    [13] Shih-Wei Yang, Yung-Ming Wang, Chih-Ping Wu (2010),“A meshless Collocation Method Based on the Differential Reproducing Kernel Approximation”, CMES 60, pp.1-39.
    [14] Yung-Ming Wang, Syuan-Mu Chen , Chih-Ping Wu (2010),“A meshless collocation method based on the differential reproducing kernel interpolation”, Computational Mechanics 45, pp.585-606.
    [15] Chih-Ping Wu, Kuan-Hao Chiu, Yung-Ming Wang (2011),“RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates”, Composite Structures93.2, pp.923-943.
    [16]黃建碩(2010),最小移動二乘法,國立成功大學土木工程研究所碩士論文。
    [17]徐靖為(2011),齊次基底移動最小二乘法在複合桿件扭轉上之應用,國立成功大學土木工程研究所碩士論文。
    [18] 郭曜琪(2006),以區域多元二次微分積分法求解卜易松、赫姆霍茲特徵值與穴室流場問題,國立台灣大學土木工程研究所碩士論文。
    [19] Hui Wang ,Qing-Hua Qin (2007),“Some Problems with the Method of Fundamental Solution Using Radial Basis Functions”, Acta Mechanica Solida Sinica20.1, pp.21-29.
    [20] Hui Wang , Jia-Lin Zhu, Xin Lin, Yong-Xing Zhang (2007),“Solution to the Poisson Equation by the Boundary Node Method”, 重慶大學學報(自然科學版)
    30.12, pp.84-88.
    [21] Bernard B. T. Kee , G. R. Liu ,C. Lu (2007),“A regularized least-squares radial point collocation method(RLS-RPCM) for adaptive analysis”, Comput Mech 40, pp.837-853.
    [22] Lee C.; Park S.-H.; Jung H.-K.; Kim D.W.; Kim H.-K.; Im C.-H (2008),“Point collocation mesh-free method using FMLSRKM for solving axisymmetric Laplace equation”, IEEE Transactions on Magnetics 44.6, pp.1234-1237.
    [23] 孟廣東,姚林泉(2009),徑向基函数局部插值的加權最小二乘配點法,蘇州大學學報(自科版)25.2,pp.15-20。
    [24] Xing Wei ,Wen Chen , Zhuo-Jia Fu (2013),“Solving Inhomogeneous Problems by Singular Boundary Method”, Journal of Marine Science and Technology21.1, pp.8-14.
    [25] T.Belytschko,Y.Krongauz,D. Organ,M. Fleming and P. Krysl(1996),“An overview and recent developments”,computer methods in applied mechanics & engineering,139,3-47.
    [26] P.Krysl and T.Belytschko(2001),“a library to computer the element free galerkin shape functions”,computer methods in applied mechanics engineering,190,2181-2205.
    [27] 屠傳經,沈珞嬋,吳子靜(1989),熱傳導,高等教育出版社,pp.12-13。
    [28] 黃文雄(1985),熱傳學,國立編譯館,pp.74-84。
    [29] 莊書豪,姜太倫(1995),流體力學/Frank M.White,高立圖書,pp.588-591。

    下載圖示 校內:2018-08-02公開
    校外:2018-08-02公開
    QR CODE