| 研究生: |
陳映卉 Chen, Ying-Hui Amy |
|---|---|
| 論文名稱: |
透明質酸對胎盤間葉幹細胞之影響 Effect of Hyaluronan on Placenta-Derived Mesenchymal Stem Cells |
| 指導教授: |
黃玲惠
Huang, Lynn L. H. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 透明質酸 、間葉幹細胞 、細胞老化 、液相色譜串聯質譜法 |
| 外文關鍵詞: | hyaluronan, proteomics, SILAC, PDMSCs |
| 相關次數: | 點閱:110 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明質酸(HA)為重要的細胞外基質組成分子,且在傷口癒合過程中扮演重要角色。本實驗室曾發現於透明質酸塗附介面上(CHA)所培養的幹細胞可維持相應的分化能力,細胞增生速率卻有減緩。本研究使用人類胎盤間葉幹細胞(PDMSCs),並探討透明質酸塗付介面CHA以及未添加透明質酸TCS兩種培養方式經由何種途徑調控幹細胞訊息傳遞。首先確認PDMSC表面的分化抗原標誌表現與間葉幹細胞一致,脂肪、軟骨、及硬骨分化也與已知的間葉幹細胞分化能力相符合。基於前人研究之CHA延長細胞週期G0/G1期的成果,將CHA和TCS介面培養的細胞選取細胞週期分布相似的時間點,統一做後續的蛋白質萃取以及蛋白質組學分析。以SILAC定量及液相色譜串聯質譜法測定短期以及長期培養的間葉幹細胞中的蛋白質表現變化。於TCS對照組別中發現,PDMSC經過長期培養之後,Ras蛋白及其相關訊息傳遞途徑的MAP2K3;MAP2K6,RND3,LIMA1,FHL1,NEFM,TPM1,以及FLNC等蛋白皆有表現量上升,或與細胞老化現象相關。而在CHA長期培養PDMSC的實驗組別中,前所述的Ras等蛋白皆有表現量下降,另有NAMPT表現量上升。NAMPT可調控細胞內多餘p53蛋白的降解,由此可延緩p53所調控之細胞老化。
Hyaluronan has been documented in important biological processes. In our lab’s previous studies, cells cultured on coated hyaluronan (CHA) substratum exhibited reduced proliferation rate yet still maintained the differentiation potentials specific for mesenchymal stem cells. Some researchers were conducted on the effects of high molecular weight hyaluronan on maintaining stem cell characteristics, yet no study has reported the effects of long-term hyaluronan treatment on stem cells. Our study aims at elucidating the effect of hyaluronan on placenta-derived mesenchymal stem cells (PDMSCs) cultured in CHA versus TCS conditions. First we characterized and established biomarkers expression profile of PDMSC. For comparison of hyaluronan-mediated protein differential expression in TCS versus CHA, time points were selected for synchronized cell cycle phase on TCS and CHA culture conditions. Cellular proteins were labeled using stable isotope labeling with amino acids in cell culture (SILAC), followed by protein identification, protein quantification, and ratio determination by using liquid chromatography tandem-mass spectrometry (LC-MS/MS). Finally, in silica prediction of differentially displayed protein patterns was generated. In our findings, in PDMSC long-term cultured on TCS, Ras protein and its related signaling pathway components, MAP2K3;MAP2K6 and actin-interacting proteins (RND3, LIMA1, FHL1, NEFM, TPM1 and FLNC), were up-regulated, and may be correlated to stress fiber formation and possibly promoted senescence and aging. In contrary, CHA long-term culture was correlated with down-regulation of Ras signaling and related proteins and up-regulation of NAMPT and molecules from the endoplasmic reticulum-associated degradation (ERAD) pathway. Notably, NAMPT up-regulation may be associated with degradation of excess p53, and thus prevented p53-mediated senescence and maintained normal phenotype of PDMSC.
Arora, P. D., Janmey, P. A., and McCulloch, C. A. G. A Role for Gelsolin in Stress Fiber-Dependent Cell Contraction. Experimental Cell Research 250, 155-167, 1999.
Baksh, D., Yao, R., and Tuan, R. S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25, 1384-1392, 2007.
Battula, V. L., Bareiss, P. M., Treml, S., Conrad, S., Albert, I., Hojak, S., Abele, H., Schewe, B., Just, L., Skutella, T., and Buhring, H. J. Human placenta and bone marrow derived MSC cultured in serum-free, β-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75, 279-291, 2007.
Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N. C., Nakano, K., Bartrons, R., Gottlieb, E., and Vousden, K. H. TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell 126, 107-120, 2006.
Bernardo, M. E., Emons, J. A., Karperien, M., Nauta, A. J., Willemze, R., Roelofs, H., Romeo, S., Marchini, A., Rappold, G. A., Vukicevic, S., Locatelli, F., and Fibbe, W. E. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connective Tissue Research 48, 132-140, 2007.
Bishop, A. L., and Hall, A. Rho GTPases and their effector proteins. Biochemical Journal 348, 241-255, 2000.
Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C.-P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science 279, 349-352, 1998.
Brown, M. K., and Naidoo, N. The endoplasmic reticulum stress response in aging and age-related diseases. Frontiers in Physiology 3, fphys.2012.00263, 2012.
Campisi, J. Replicative Senescence: An Old Lives’ Tale? Cell 84, 497-500, 1996.
Campisi, J., and Fagagna, F. d. A. d. Cellular senescence: when bad things happen to good cells. Nature Reviews 8, 729-740, 2007.
Cao, K., Blair, C. D., Faddah, D. A., Kieckhaefer, J. E., Olive, M., Erdos, M. R., Nabel, E. G., and Collins, F. S. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. The Journal of Clinical Investigation 121, 2833-2844, 2011.
Chen, C. C., Hay, N., and Lau, L. F. The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. Journal of Cell Biology 171, 559-568, 2005.
Chen, C. C., and Lau, L. F. Functions and mechanisms of action of CCN matricellular proteins. The International Journal of Biochemistry and Cell Biology 41, 771-783, 2009.
Craig, W., Kay, R., Cutler, R. L., and Lansdorp, P. M. Expression of Thy-1 on human hematopoietic progenitor cells. The Journal of Expeimental Medicine 177, 1331-1342, 1993.
da Silva Meirelles, L., Chagastelles, P. C., and Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science 119, 2204-2213, 2006.
Darzynkiewicz, Z., and Balazs, E. A. Genome integrity, stem cells and hyaluronan. Aging 4, 78-88, 2012.
Dayal, S., Sparks, A., Jacob, J., Allende-Vega, N., Lane, D. P., and Saville, M. K. Suppression of the Deubiquitinating Enzyme USP5 Causes the Accumulation of Unanchored Polyubiquitin and the Activation of p53. The Journal of Biological Chemistry 284, 5030-5041, 2009.
Dreesen, O., Chojnowski, A., Ong, P. F., Zhao, T. Y., Common, J. E., Lunny, D., Lane, E. B., Lee, S. J., Vardy, L. A., Stewart, C. L., and Colman, A. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. Journal of Cell Biology 200, 605-617, 2013.
Flex1, E., Jaiswal, M., Pantaleoni, F., Martinelli, S., Strullu, M., Fansa, E. K., Caye, A. l., Luca, A. D., Lepri, F., Dvorsky, R., Pannone, L., Paolacci, S., Zhang, S. C., Fodale, V., Bocchinfuso, G., Rossi, C., Burkitt-Wright, E. M. M., Farrotti, A., Stellacci, E., Cecchetti, S., Ferese, R., Bottero, L., Castro, S., Fenneteau, O., Brethon, B. t., Sanchez, M., Roberts, A. E., Yntema, H. G., Burgt, I. V. D., Cianci, P., Bondeson, M. L., Digilio, M. C., Zampino, G., Kerr, B., Aoki, Y., Loh, M. L., Palleschi, A., Schiavi, E. D., Care`, A., Selicorni, A., Dallapiccola, B., Cirstea, I. C., Stella, L., Zenker, M., Gelb, B. D., Cave´, H., Ahmadian, M. R., and Tartaglia, M. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Human Molecular Genetics 23, 4315-4327, 2014.
Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., and Perlingeiro, R. C. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743-1751, 2007.
Gerecht, S., Burdick, J. A., Ferreira, L. S., Townsend, S. A., Langer, R., and Vunjak-Novakovic, G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 104, 11298-11303, 2007.
Geschwind, D. H., Ou, J., Easterday, M. C., Dougherty, J. D., Jackson, R. L., Chen, Z., Antoine, H., Terskikh, A., Weissman, I. L., Nelson, S. F., and Kornblum, H. I. A genetic analysis of neural progenitor differentiation. Neuron 29, 325-339, 2001.
Godar, S., Ince, T. A., Bell, G. W., Feldser, D., Donaher, J. L., Bergh, J., Liu, A., Miu, K., Watnick, R. S., Reinhardt, F., McAllister, S. S., and Jacks, T. Growth-Inhibitory and Tumor-Suppressive Functions of p53 Depend on Its Repression of CD44 Expression. Cell 134, 62-73, 2008.
Gourlay, C. W., and Ayscough, K. R. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nature Reviews 6, 583-589, 2005a.
Gourlay, C. W., and Ayscough, K. R. Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. Journal of Cell Science 118, 2119-2132, 2005b.
Green, D. R., and Chipuk, J. E. p53 and Metabolism: Inside the TIGAR. Cell 126, 30-32, 2006.
Halaschek-Wiener, J., and Brooks-Wilson, A. Progeria of stem cells: stem cell exhaustion in Hutchinson-Gilford progeria syndrome. Journal of Gerontology Biological Sciences and Medical Sciences 62, 3-8, 2007.
Hall, A. Rho GTPases and the Actin Cytoskeleton. Science 279, 509-514, 1998.
Hayflick, L., and Moorhead, P. The serial cultivation of human diploid cell strains. Experimental Cell Research 25, 585-621, 1961.
Ho, J., and Bretscher, A. Ras Regulates the Polarity of the Yeast Actin Cytoskeleton through the Stress Response Pathway. Molecular Biology of the Cell 12, 1541-1555, 2001.
Huot, T. J., Rowe, J., Harland, M., Drayton, S., Brookes, S., Gooptu, C., Purkis, P., Fried, M., Bataille, V., Hara, E., Newton-Bishop, J., and Peters, G. Biallelic Mutations in p16INK4a Confer Resistance to Ras- and Ets-Induced Senescence in Human Diploid Fibroblasts. Molecular and Cellular Biology 22, 8135-8143, 2002.
Imai, S., and Yoshino, J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes, Obesity and Metabolism 15, 26-33, 2013.
Islam, M. O., Kanemura, Y., Tajria, J., Mori, H., Kobayashi, S., Hara, M., Yamasaki, M., Okano, H., and Miyake, J. Functional expression of ABCG2 transporter in human neural stem/progenitor cells. Neuroscience Research 52, 75-82, 2005.
Javazon, E. H., Beggs, K. J., and Flake, A. W. Mesenchymal stem cells: paradoxes of passaging. Experimental Hematology 32, 414-425, 2004.
Jun, J. I., and Lau, L. F. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nature Reviews Drug Discovery 10, 945-963, 2011.
Kasper, G., Mao, L., Geissler, S., Draycheva, A., Trippens, J., Hnisch, J. K., Tschirschmann, M., Kaspar, K., Perka, C., Duda, G. N., and Klose, J. Insights into Mesenchymal Stem Cell Aging: Involvement of Antioxidant Defense and Actin Cytoskeleton. Stem Cells 27, 1288-1297, 2009.
Kern, S., Eichler, H., Stoeve, J., Kluter, H., and Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294-1301, 2006.
Kevei, É., and Hoppe, T. Ubiquitin sets the timer: impacts on aging and longevity. Nature Structural and Molecular Biology 21, 290-292, 2014.
Kishi, K., Okabe, K., Shimizu, R., and Kubota, Y. Fetal Skin Possesses the Ability to Regenerate Completely: Complete Regeneration of Skin. The Keio Journal of Medicine 61, 101-108, 2012.
Krishnamurthy, P., Ross, D. D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, K. E., Sarkadi, B., Sorrentino, B. P., and Schuetz, J. D. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. The Journal of Biological Chemistry 279, 24218-24225, 2004.
Krishnamurthy, P., and Schuetz, J. D. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals 18, 349-358, 2005.
Larsson, N. G. Somatic Mitochondrial DNA Mutations in Mammalian Aging. Annual Review of Biochemistry 79, 683-706, 2010.
Leadsham, J., Kotiadis, V., Tarrant, D., and Gourlay, C. Apoptosis and the yeast actin cytoskeleton. Cell Death and Differentiation 17, 754-762, 2010.
Liu, C. M., Chang, C. H., Yu, C. H., Hsu, C. C., and Huang, L. L. H. Hyaluronan substratum induces multdrug resistance in human mesenchymal stem cells via CD44 signaling. Cell and Tissue Research, 465-475, 2009.
Liu, C. M., Yu, C. H., Chang, C. H., Hsu, C. C., and Huang, L. L. H. Hyaluronan substratum holds mesenchymal stem cells in slow-cycling mode by prolonging G1 phase. Cell Tissue Research 334, 435-443, 2008.
Liu, Q., Xie, F., Siedlak, S. L., Nunomura, A., Honda, K., Moreira, P. I., Zhua, X., Smith, M. A., and Perry, G. Neurofilament proteins in neurodegenerative diseases. Cellular and Molecular Life Sciences 61, 3057-3075, 2004.
Lo´pez-Otı´n, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. The Hallmarks of Aging. Cell Review 153, 1194-1217, 2013.
Lykke-Andersen, K., Schaefer, L., Menon, S., Deng, X. W., Miller, J. B., and Wei, N. Disruption of the COP9 Signalosome Csn2 Subunit in Mice Causes Deficient Cell Proliferation, Accumulation of p53 and Cyclin E, and Early Embryonic Death. Molecular and Cellular Biology 23, 6790-6797, 2003.
Martinez-Vicente, M., Sovak, G., and Cuervo, A. M. Protein degradation and aging. Experimental Gerontology 40, 622-633, 2005.
Masson, N. M., Currie, I. S., Terrace, J. D., Garden, O. J., Parks, R. W., and Ross, J. A. Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. American Journal of Physiology - Gastrointestinal and Liver Physiology 291, G45-G54, 2006.
McGuckin, M. A., Eri, R. D., Das, I., Lourie, R., and Florin, T. H. ER stress and the unfolded protein response in intestinal inflammation. American Journal of Physiology 298, G820-G832, 2010.
Miki, T., Mitamura, K., Ross, M. A., Stolz, D. B., and Strom, S. C. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. Journal of Reproductive Immunology 75, 91-96, 2007.
Mohyeldin, A., Garzo´n-Muvdi, T. s., and ones-Hinojosa, A. Q. Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche. Cell Stem Cell 7, 150-161, 2010.
Musina, R. A., Bekchanova, E. S., and Sukhikh, G. T. Comparison of mesenchymal stem cells obtained from different human tissues. Bulletin of Experimental Biology and Medicine 139, 504-509, 2005.
Nakamura, Y., Muguruma, Y., Yahata, T., Miyatake, H., Sakai, D., Mochida, J., Hotta, T., and Ando, K. Expression of CD90 on keratinocyte stem/progenitor cells. British Journal of Dermatology 154, 1062-1070, 2006.
Nicholas, J., Niles, J., DeWitt, D., Prough, D., Parsley, M., Vega, S., Cantu, A., Lee, E., and Cortiella, J. Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Research and Therapy 4, 3-25, 2013.
Panepucci, R. A., Siufi, J. L., Silva, W. A., Jr., Proto-Siquiera, R., Neder, L., Orellana, M., Rocha, V., Covas, D. T., and Zago, M. A. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22, 1263-1278, 2004.
Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Buhring, H. J., Evangelista, M., Hennerbichler, S., Liu, B., Magatti, M., Mao, N., Miki, T., Marongiu, F., Nakajima, H., Nikaido, T., Portmann-Lanz, C. B., Sankar, V., Soncini, M., Stadler, G., Surbek, D., Takahashi, T. A., Redl, H., Sakuragawa, N., Wolbank, S., Zeisberger, S., Zisch, A., and Strom, S. C. CONCISE REVIEW: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells 26, 300-311, 2008.
Passipieri, J., Kasai-Brunswick, T., Suhett, G., Martins, A., Brasil, G., Campos, D., Rocha, N., Ramos, I., Mello, D., Rodrigues, D., Christie, B., Silva-Mendes, B., Balduino, A., Sa', R., Lopes, L., Goldenberg, R., Campos de Carvalho, A., and Carvalho, A. Improvement of cardiac function by placenta-derived mesenchymal stem cells does not require permanent engraftment and is independent of the insulin signaling pathway. Stem Cell Research and Therapy 5, 102-115, 2014.
Pegoraro, G., and Misteli, T. The central role of chromatin maintenance in aging. Aging 1, 1017-1022, 2009.
Peth, A., Berndt, C., Henke, W., and Dubiel, W. Downregulation of COP9 signalosome subunits differentially affects the CSN complex and target protein stability. BioMed Central Biochemistry 8, 1-11, 2007.
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147, 1999.
Post, P. L., Bokoch, G. M., and Mooseker, M. S. Human myosin-IXb is a mechanochemically active motor and a GAP for rho. Journal of Cell Science 111, 941-950, 1998.
Prieur, A., Besnard, E., Babled, A., and Lemaitre, J. M. p53 and p16INK4A independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nature Communications 2, 1-10, 2011.
Puzio-Kuter, A. M. The Role of p53 in Metabolic Regulation. Genes and Cancer 2, 385-391, 2011.
Reed, S. M., and Quelle, D. E. p53 Acetylation: Regulation and Consequences. Cancers 7, 30-69, 2015.
Rossi, D. J., Jamieson, C. H. M., and Weissman, I. L. Stems Cells and the Pathways to Aging and Cancer. Cell Review 132, 681-696, 2008.
Sakaguchi, Y., Sekiya, I., Yagishita, K., and Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatology 52, 2521-2529, 2005.
Salminena, A., and Kaarnirantac, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Research Reviews 11, 230-241, 2012.
Scharenberg, C. W., Harkey, M. A., and Torok-Storb, B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99, 507-512, 2002.
Schmidt-Ullrich, R. K., Dent, P., Grant, S., Mikkelsen, R. B., and Valerie, a. K. Signal Transduction and Cellular Radiation Responses. Radiation Research 153, 245-257, 2000.
Sharpless, N. E., and DePinho, R. A. How stem cells age and why this makes us grow old. Nature Review Molecular Cell Biology 8, 703-713, 2007.
Shukla, S., Nair, R., Rolle, M. W., Braun, K. R., Chan, C. K., Johnson, P. Y., Wight, T. N., and McDevitt, T. C. Synthesis and Organization of Hyaluronan and Versican by Embryonic Stem Cells Undergoing Embryoid Body Differentiation. Journal of Histochemistry and Cytochemistry 58, 345-358, 2010.
Singleton, P. A., and Bourguignon, L. Y. W. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Experimental Cell Research 295, 102-118, 2004.
Suwan, K., Choocheep, K., Hatano, S., Kongtawelert, P., Kimata, K., and Watanabe, a. H. Versican/PG-M Assembles Hyaluronan into Extracellular Matrix and Inhibits CD44-mediated Signaling toward Premature Senescence in Embryonic Fibroblasts. The Journal of Biological Chemistry 284, 8596-8604, 2009.
Takai, Y., Sasaki, T., Tanaka, K., and Nakanishi, H. Rho as a regulator of the cytoskeleton. Trends in Biochemical Sciences 20, 227-231, 1995.
Takeda, H., Yamamoto, M., Morita, N., and Tanizawa, T. Relationship between Thy-1 expression and cell-cycle distribution in human bone marrow hematopoietic progenitors. American Journal of Hematology 79, 187-193, 2005.
Vaananen, H. K. Mesenchymal stem cells. Annals of Medicine 37, 469-479, 2005.
van Deursen, J. M. The role of senescent cells in ageing. Nature Reviews 509, 439-446, 2014.
Wakabayashi, S., and Yoshida, H. The essential biology of the endoplasmic reticulum stress response for structural and computational biologists. Computational and Structural Biotechnology Journal 6, DOI: 10.5936/csbj.201303010, 2013.
Wu, S. C., Chang, J. K., Wang, C. K., Wang, G. J., and Ho, M. L. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 31, 631-640, 2010.
Yen, B. L., Huang, H. I., Chien, C. C., Jui, H. Y., Ko, B. S., Yao, M., Shun, C. T., Yen, M. L., Lee, M. C., and Chen, Y. C. Isolation of multipotent cells from human term placenta. Stem Cells 23, 3-9, 2005.
Zhou, S., Morris, J. J., Barnes, Y., Lan, L., Schuetz, J. D., and Sorrentino, B. P. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proceedings of the National Academy of Sciences of the United States of America 99, 12339-12344, 2002.
Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Lagutina, I., Grosveld, G. C., Osawa, M., Nakauchi, H., and Sorrentino, B. P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine 7, 1028-1034, 2001.
校內:2021-01-01公開