簡易檢索 / 詳目顯示

研究生: 李浩瑋
Lee, Hau-Wei
論文名稱: 三維空間位置量測系統之設計與性能分析
Design and Performance Analysis of a Three-Dimension Space Position Measurement System
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 129
中文關鍵詞: 雷射追蹤器調變解調變三角量測機械手臂
外文關鍵詞: laser tracker, modulation, demodulation, triangulation, robot arm
相關次數: 點閱:164下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的雷射追蹤儀(Laser Tracker)是利用一組雷射干涉儀配合雷射位移感測器(PSD)來組成追蹤儀本體,再將角耦反射鏡(corner cube)或貓眼鏡(cat’s eye)配置於受測物上做為追蹤目標。這種追蹤儀最大的優點就是應用範圍廣泛,除了可用在一般的三維空間量測外,亦可用於曲面造形以及機械手臂上的量測,但其缺點是價格過於昂貴,數學的計算與光路的組成相當複雜,以及量測不確定性較多。

    本文提出了一種三維立體空間位置量測追蹤儀,為一種三維位置之量測裝置,整個系統是由兩組追蹤模組、零度角復歸子系統及一個目標位移感測器所組成。使用時是將目標位移感測器置於待測物上,當待測物移動時利用零點鎖定的方式,使追蹤模組上的雷射追蹤並鎖定目標位移感測器的原點,最後再利用三角量測法以及兩組追蹤模組的追蹤角度變化,即可求得待測物在空間中的位置。因為兩組追蹤模組的雷射是同時入射至同一個目標位移感測器。故在本研究中最主要的關鍵即為兩組雷射之位移分離技術,其主要是利用調變-解調變的方式來進行混合信號的分離,經實驗結果証實,信號的靜態偏移比率(static shift rate)為0.2 %,動態下的交叉耦合比率(dynamic cross talk rate)在2%以內。

    本研究是先利用一個小型的二維空間定位量測系統來進行理論驗証、可行性的評估以及不確定性的分析,然後針對結果進行檢討並開發一套三維空間定位量測系統。在三維空間定位量測系統的設計過程中,利用了量測不確定性的分析來探討各個組裝誤差對於系統量測精度的影響,最後利用其動態特性響應分析,來進行控制器的設計。

    經由實驗結果證實,雙雷射單感測器的技術確實可應用於空間量測追蹤系統,在X、Y方向300 mm與Z方向200 mm的量測範圍中,位置量測誤差小於±0.05%。本研究所提出的三維空間定位量測系統,除了可用於空間定位量測外,亦可用於曲面的量測建構及加工輪廓量測。

    In the past, laser trackers consist of a tracker, which includes a laser interferometer, a position sensitive detector and some optical components, and a reflector. Two types of ref-lector, corner cube reflector and cat’s eye reflector can be used as the tracking target. Though laser trackers are widely used in the industry such as assembly of air-planes/automobiles, contouring measurement, robot calibration and so on, laser trackers are expensive, and the corresponding solution procedure is too complex. The influence of measurement uncertainties is also significant.

    This study proposes a novel three-dimension space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem and a target quadrant photo-diode (QPD). The target QPD is placed on the tracking object. The method of zero locking is used to make the rays stay on the zero point of the target QPD. The three-dimension space position of the target QPD is determined by the principle of triangulation. Since these two laser rays are projecting on one QPD, simultaneously. Thus, for separate the coupled positional value, the modulation/demodulation technology is uti-lized as the key technology in this study. The experiment result shows that the signal static shift rate is about 0.2% in steady state and the dynamic cross talk rate is within the range of 2%.

    A two-dimension space position measurement system with small measurement range was first developed for theoretical verification, feasibility demonstration and uncertainties analysis. A three-dimension space position measurement system was also developed accor-dingly. The Measurement uncertainty analysis was used to estimate the measurement error due to the setup error and instrument error.

    The experiment result shows that the measurement technology of dual laser and single detector can be applied to implement the 3D positioning measurement system. The mea-surement error of X, Y and Z direction of the three-dimension space position measurement system are less than ±0.05% within the measurement range of 300 mm, 300 mm and 200 mm for X, Y and Z axis, respectively. The proposed system can be applied to measurements of machine tools and robot arms.

    Abstract chinese.........................................I Abstract............................................IX Acknowledgment......................................XI Contents........................................XII List of Figures........................................XV List of Tables.......................................XX Chapter 1 Introduction...................................1 1.1 Motivation...........................................1 1.2 Research background................................7 1.3 Research objectives...............................15 1.4 Outline of this dissertation....................17 Chapter 2 Positional value decoupling method...............................20 2.1 Description of laser diodes............................................20 2.2 Description of QPDs....................................................22 2.3 Modulation and demodulation for a single laser diode...................24 2.3.1 Modulation and demodulation for multi-laser diode with single QPD....26 2.4 Experiment Results.....................................................28 2.4.1 I-P curve test...................................................32 2.4.2 Frequency response...............................................33 2.4.3 Spot projection with slanting angle..............................35 2.4.4 Modulation of a single laser diode...............................36 2.4.5 Demodulation for dual laser diode................................38 2.4.6 Background light noise rejection.................................40 Chapter 3 Development of a 2D space position measurement system............42 3.1 System description.....................................................42 3.2 Measurement principle..................................................44 3.3 Operational processes..................................................46 3.4 Experiment.............................................................48 3.4.1 Experiment software..............................................48 3.4.2 Control of the 2D space position measurement system..............48 3.5 Measurement uncertainty analysis.......................................55 3.5.1 Non linearity rotation...........................................55 3.5.2 Error of origin locking..........................................57 3.5.3 Laser offset.....................................................59 Chapter 4 Development of a 3D space position measurement system............64 4.1 System description.....................................................64 4.2 Ideal measurement model................................................67 4.3 Measurement model with setup error.....................................71 4.4 Measurable range.......................................................76 4.5 Control of the 3D space position measurement system....................79 Chapter 5 Experiment result................................................83 5.1 Experiment instruments and programs....................................83 5.2 System test in different tracking distance.............................83 5.3 System identification..................................................89 5.4 Calibration and stability test.........................................92 5.5 Tracking and contouring measurement....................................97 5.5.1 Winding path test................................................97 5.5.2 Maximum tracking speed...........................................100 5.5.3 Circular trajectory tracking measurement.........................104 5.6 Measurement for a robot arm............................................107 5.7 Measurement error analysis.............................................111 Chapter 6 Discussions and Conclusions......................................116 6.1 Discussions............................................................116 6.1.1 Orthogonal problem...............................................116 6.1.2 System resolution................................................118 6.2 Conclusions............................................................119 References.................................................................124 Vita.......................................................................129

    [1] C. Gong, J. Yuan, and J. Ni, 2000, "Nongeometric error identification and compensation for robotic system by inverse calibration," International Journal of Machine Tools and Manufacture, 40, pp. 2119-2137.
    [2] J. Hesselbach, C. Bier, I. Pietsch, N. Plitea, S. Buttgenbach, A. Wogersien, and J. Guttler, 2005, "Passive-joint sensors for parallel robots," Mechatronics, 15, pp. 43-65.
    [3] K. H. Hunt, 1987, "Robot Kinematics -A compact analytic inverse solution for velocities," Journal of Mechanisms, Transmissions, and Automation in Design, 109, pp. 42-49.
    [4] T. Tsumugiwa, R. Yokogawa, and K. Hara, 2003, "Measurement method for compliance of vertical-multi-articulated robot - Application to 7-DOF robot PA-10," Proceedings - IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 2741-2746.
    [5] K. J. Waldron, 1981, "Geometrically Based Manipulator Rate Control Algorithms," Proceedings - OSU Applied Mechanisms Conference (Oklahoma State University), Kansas City, MO, USA, pp. 1-1.
    [6] G. D. van Albada, J. M. Lagerberg, A. Visser, and L. O. Hertzberger, 1995, "A low-cost pose-measuring system for robot calibration," Robotics and Autonomous Systems, 15, pp. 207-227.
    [7] J. M. S. T. Motta, G. C. De Carvalho, and R. S. McMaster, 2001, "Robot calibration using a 3D vision-based measurement system with a single camera," Robotics and Computer-Integrated Manufacturing, 17, pp. 487-497.
    [8] C.-J. Liu, J.-G. Zhu, Y.-B. Li, and S.-H. Ye, 2006, "Study on a real-time visual measuring and tracking system for industry robot welding," Proceedings of SPIE, 6344 II, p. 634436.
    [9] J. J. Aguilar, M. Lope, F. Torres, and A. Blesa, 2005, "Development of a stereo vision system for non-contact railway concrete sleepers measurement based in holographic optical elements," Measurement, 38, pp. 154-165.
    [10] S. Liu, K. Peng, X. Zhang, H. Zhang, and F. Huang, 2006, "The study of dual cameras 3D coordinate vision measurement system using a special probe," Proceedings of SPIE, 6357 II, p. 63574.
    [11] P. L. Teoh, B. Shirinzadeh, C. W. Foong, and G. Alici, 2002, "The measurement uncertainties in the laser interferometry-based sensing and tracking technique," Measurement: Journal of the International Measurement Confederation, 32, pp. 135-150.
    [12] 張良知,黃永翔,張世彬, 1999, "雷射追蹤儀之研製," 機械月刊, 25, pp. 282-290.
    [13] H. Zhuang, S. H. Motaghedi, Z. S. Roth, and Y. Bai, 2003, "Calibration of multi-beam laser tracking systems," Robotics and Computer-Integrated Manufacturing, 19, pp. 301-314.
    [14] H. Zhuang and Z. S. Roth, 1995, "Modeling gimbal axis misalignments and mirror center offset in a single-beam laser tracking measurement system," International Journal of Robotics Research, 14, pp. 211-224.
    [15] 盧嘉鴻, 2004, "雷射追蹤器的光學建模與分析," 國立成功大學機械工程學系博士論文.
    [16] 何瑞樑, 2004, "建立雷射追蹤儀量測工具機靜態幾何誤差之數學模式," 國立中興大學應用數學系博士論文.
    [17] M. Brudka and A. Pacut, 2002, "Intelligent robot control using ultrasonic measurements," IEEE Transactions on Instrumentation and Measurement, 51, pp. 454-459.
    [18] J. M. M. Abreu, R. Ceres, L. Calderon, M. A. Jimenez, and P. Gonzalez-de-Santos, 1999, "Measuring the 3D-position of a walking vehicle using ultrasonic and electromagnetic waves," Sensors and Actuators, A: Physical, 75, pp. 131-138.
    [19] M. Ocana, L. M. Bergasa, M. A. Sotelo, J. Nuevo, and R. Flores, 2005, "Indoor robot localization system using WiFi signal measure and minimizing calibration effort," IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia, pp. 1545-1550.
    [20] C.-H. Liu, W.-Y. Jywe, C.-C. Hsu, and T.-H. Hsu, 2005, "Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage," Review of Scientific Instruments, 76, pp. 055110-6.
    [21] C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, 2005, "A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module," Sensors and Actuators, A: Physical, 125, pp. 100-108.
    [22] C.-W. Lee and S.-W. Kim, 1997, "An ultraprecision stage for alignment of wafers in advanced microlithography," Precision Engineering, 21, pp. 113-122.
    [23] S. Spiess, M. Vincze, and M. Ayromlou, 1998, "On the calibration of a 6-D laser tracking system for dynamic robot measurements," IEEE Transactions on Instrumentation and Measurement, 47, pp. 270-274.
    [24] L. Qi, H. Zhang, P. Ye, and G. Duan, 2004, "6 DOF long-range precision tracking system," Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, The Hague, Netherlands, pp. 5307-5311.
    [25] P. D. Lin and C.-H. Lu, 2005, "Modeling and Sensitivity Analysis of Laser Tracking Systems by Skew-Ray Tracing Method," Journal of Manufacturing Science and Engineering, 127, pp. 654-662.
    [26] S. Osawa, T. Takatsuji, J. Hong, H. Noguchi, and T. Kurosawa, 2001, "Evaluation of the performance of a novel laser tracker used for coordinate measurements," Proceedings of SPIE - The International Society for Optical Engineering, pp. 127-135.
    [27] H. Jiang, S. Osawa, T. Takatsuji, H. Noguchi, and T. Kurosawa, 2002, "High-performance laser tracker using an articulating mirror for the calibration of coordinate measuring machine," Optical Engineering, 41, pp. 632-637.
    [28] K. Umetsu, R. Furutnani, S. Osawa, T. Takatsuji, and T. Kurosawa, 2005, "Geometric calibration of a coordinate measuring machine using a laser tracking system," Measurement Science and Technology, 16, pp. 2466-2472.
    [29] Z. Ren and L. S. Stephens, 2006, "Laser pointing and tracking using a completely electromagnetically suspended precision actuator," Journal of Guidance, Control, and Dynamics, 29, pp. 1235-1239.
    [30] L. Zeng, F. Yuan, D. Song, and R. Zhang, 1999, "A two-beam laser triangulation for measuring the position of a moving object," Optics and Lasers in Engineering, 31, pp. 445-453.
    [31] T. Takatsuji, M. Goto, A. Kirita, T. Kurosawa, and Y. Tanimura, 2000, "Relationship between the measurement error and the arrangement of laser trackers in laser trilateration," Measurement Science and Technology, 11, pp. 477-483.
    [32] P. Castellini and E. P. Tomasini, 2004, "Image-based tracking laser Doppler vibrometer," Review of Scientific Instruments, 75, pp. 222-232.
    [33] C. Nagata, A. Torii, K. Doki, and A. Ueda, 2007, "A position measurement system for a small autonomous mobile robot," 2007 International Symposium on Micro-NanoMechatronics and Human Science, MHS, Nagoya, Japan, pp. 50-55.
    [34] O. Nakamura, M. Goto, K. Toyoda, N. Takai, T. Kurosawa, and T. Nakamata, 1994, "A laser tracking robot-performance calibration system using ball-seated bearing mechanisms and a spherically shaped cat's-eye retroreflector," Review of Scientific Instruments, 65, pp. 1006-1011.
    [35] Toshiyuki Takatsuji, Mitsuo Gotoy, Tomizo Kurosawa, Yoshihisa Tanimura, and Y. Kosekiz, 1998, "The first measurement of a three-dimensional coordinate by use of a laser tracking interferometer system based on trilateration," Measurement Science and Technology, 9, pp. 38-41.
    [36] R. J. Grasso, J. C. Wikman, D. P. Drouin, G. F. Dippel, and P. I. Egbert, 2008, "A high-resolution 2D imaging laser radar for occluded hard target viewing and identification," International Journal of High Speed Electronics and Systems, 18, pp. 393-400.
    [37] Z. Mao, X. Qu, F. Wei, and Y. Wang, 2008, "A tracking system with space virtual feedback," Journal of Control Theory and Applications, 6, pp. 277-280.
    [38] S. Yu and Y.-z. Zhao, 2009, "Study on rotational stabilization in a laser tracking system," Journal of Shanghai Jiaotong University (Science), 14, pp. 316-320.
    [39] Y. Bai, H. Zhuang, and Z. S. Roth, 2005, "Fuzzy logic control to suppress noises and coupling effects in a laser tracking system," IEEE Transactions on Control Systems Technology, 13, pp. 113-121.
    [40] S. Ashraf, R. M. Parkin, and E. Muhammad, 2007, "Iterative learning-based laser beam tracker," Industrial Robot, 34, pp. 326-331.
    [41] 張守敬,劉醇星,姬梁文, 2002, "半導體雷射," 科學發展, 394, pp. 14-22.
    [42] S. Donati, Electro-Optical Instrumentation Sensing and Measuring with Lasers: Prentice HAll, 2004.
    [43] S. Donati, C. Cheng-Yen, and Y. Chih-Chung, 2007, "Uncertainty of Positioning and Displacement Measurements in Quantum and Thermal Regimes," Instrumentation and Measurement, IEEE Transactions on, 56, pp. 1658-1665.
    [44] E. J. Lee, Y. Park, C. S. Kim, and T. Kouh, 2010, "Detection sensitivity of the optical beam deflection method characterized with the optical spot size on the detector," Current Applied Physics, 10, pp. 834-837.
    [45] H. Shang, G. Zhang, Z. Wei, and Y. Wang, 2006, "Research of the impact of slanting installation error of PSD on spot position," Proceedings of SPIE - The International Society for Optical Engineering, Shanghai, China, pp. 63573J-5.
    [46] D. Qian, W. Wang, and I. J. Busch-Vishniac, 1993, "A method for measurement of multiple light spot positions on one position-sensitive detector (PSD)," IEEE Transactions on Instrumentation and Measurement, 42, pp. 14-18.
    [47] P. Cominos and N. Munro, 2002, "PID controllers: recent tuning methods and design to specification," Control Theory and Applications, IEE Proceedings -, 149, pp. 46-53.
    [48] C. Rusu, M. Tico, P. Kuosmanen, and E. J. Delp, 2003, "Classical geometrical approach to circle fitting---review and new developments," Journal of Electronic Imaging, 12, pp. 179-193.

    下載圖示 校內:2013-07-16公開
    校外:2015-07-16公開
    QR CODE