| 研究生: |
王達興 Wang, Da-Shin |
|---|---|
| 論文名稱: |
中孔洞分子篩晶體研究 Study on the crystal morphology of mesoporous silica |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 界面活性劑 、矽酸鈉 |
| 外文關鍵詞: | XRD, BET |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自然界中,像矽藻類的生物材料多以漂亮且豐富的形態存在,而這些生物材料主要成分多為氧化矽。因此我們認為氧化矽應該可以呈現出多種豐富形態。我們模擬生物成礦作用,在低反應濃度的合成條件下,精密的控制影響生成速度的熱力學和動力學的變因,操控中孔洞材料的晶型。
為了使氧化矽能堆積成大顆的晶體形狀,我們需控制使其生成速度變慢。這樣一來有機 - 無機組合成的小顆粒才有時間慢慢堆積成為晶體。由文獻中得知氧化矽在其等電位點時(pH = 2.0)聚合速度最慢且有機模板和氧化矽之間的作用力也是屬於較弱的氫鑑結合,於是我們選擇酸性條件為主要研究範圍。另外,有機模板和氧化矽物種的濃度、比例、界面活性劑和氧化矽來源的類形、合成溫度和溶液中陰離子的存在都是影響晶體長成的變因。本實驗已經找出可以一系列操控不同外觀晶形的主要合成條件。
除了外觀具有晶型的中孔洞分子篩材料之合成外,本實驗亦利用陰離子型界面活性劑,同時加入含有胺基的有機矽烷和矽酸鹽進行聚合反應,以加強無機氧化矽骨架和界面活性劑間的作用力,而成功合成出孔洞表面含有(-NH2 )官能基的中孔洞分子篩材料。
In nature, there are many biomaterials, such as diatoms display rich morphologies and multiple-scale ordering. The major inorganic component of biomaterials is silica. Hence, we consider the mesoporous material should have rich morphologies. We mimic the biomineralization, to dominate morphologies of the mesoporous material by controling the thermodynamic and kinetic factor
In order to make mesoporous silica in big crystal-like particles, we must control the silicate condensation rate at under suitable condition (i.e. pH around 2.0). There is enough time to let surfactant-silica self-assembles to form crystal-like particles. From previous literatures, we know the condensation rates of the silicates is the slowest and the interaction between organic templates and inorganic framework is weak at the isoelectric point of silica (pH = 2.0), so we chose acidic condition for the growth of the mesoporous silica crystals. Beside of the pH value, the concentrations of the surfactants and silicate, the source of the surfactants and silicate, system temperature and the counteranion are the determing factors on the crystal morphologies of the mesoporous silica.
Besides synthesize the crystal-like mesoporous materials. We also use the anionic surfactant as structure-directing agent, and sodium silicate and γ-aminopropyltrimethoxysilane as silica sources. Due to the presence of the amino-groups, the interaction between anionic surfactants and inorganic silicate was enhanced. Thus, we can successful synthesis the organofunctionalized mesoporous material with anionic surfactant.
1. S. Bhatia, Zeolite catalysis principles and application, CRC press, Florida,1990.
2. B. Imelik, Y. Naccache, J. C, Vedrine, G. Coudurier, H. Praliaud, Catalysis by zeolite, Elesevier, Amstordam, 1980.
3. W. J. Ward, Molecular sieve catalysts, in applied industrial catalysis, Vol.3, Academic press, New York, 1984.
4. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359 ( 1992 ) 710.
5. J. S Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D. Schmitt, C. T – W. Chu, D. H. Olson, E. W Sheppard, S. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 114 ( 1992 ) 10834
6. A. Sayari, Chem. Mater., 8 ( 1996 ) 1840.
7. R. Neumann, K. Khenkin, Chem. Commun. 23 ( 1996 ) 2643.
8. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett. 39 ( 1996) 63.
9. M. Hartmann, A. Popll, L. Kenven, J. Phys. 100 ( 1996 ) 9906.
10. A. Corma, M. T. Navarro, J. Perez – Pariente, F. Sanchez, Stud. Surf. Sci. Catal. 84 (1994 ) 69.
11. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., ( 1995 ) 2231.
12. C. G. Wu, T. Bein, Science, 264 ( 1994 ) 1757.
13. C. G. Wu, T. Bein, Science, 266 ( 1994 ) 1013.
14. C. G. Wu, T. Bein, Chem. Mater., 6 ( 1994 ) 1109.
15. ( a )Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 12 (1996 )
6202
( b )C. H. Ko, R. Ryoo, J. Chem. Commun., ( 1995 ) 2467.
16. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc. Che. Commun., ( 1995 ) 1803.
17. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun., (1995 ) 1617.
18. P. Behrens, G. D. Stucky, Angew. Chem. Int. Ed. Engl. 32 ( 1993 ) 696.
19. Todros, T. F. Surfactants ; Academic Press :London, ( 1980 ).
20. B. Lindman and H. Wennerström. Micelles : Amphiphile Aggregation in Aqueous solution, Springer – Verlag, Heidelberg, ( 1980 ).
21. K. Holmerg, B. Jönsson, B. Kronberg and B. Lindman, “ Surfants and Polymers in Aqueous Solution ” 2nd ed., John Wiley & Sons Ltd, England, 2003.
22. Ben – Naim, A Hydrophobic Interaction. Plnnum Press, NY, ( 1980 )
23. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 13 ( 1980 ) 121.
24. D. J. Mithchell, B. W. Ninham, J. Chem. Soc. Faraday, Trans. II., 77 ( 1981 ) 1264.
25. C. Tanford “ The Hydrophobic Effect “ New York, Wiley ( 1973 ).
26. D. F. Evans, H.Wennerström, The Colloidal Domin, VHC ( 1994 ).
27. J. R. Mishic and M. R. Fisch. J. Phys. Chem., 92 : 3222 ( 1990 ).
28. S. Ikeda, S. Ozeki, and M. A. Tsnnoda. J. Colloid Interface Sci., 73 : 27 ( 1980 ).
29. C. Y. Young, P. J. Missel, N. A. Mazer G. B. Benedek, and M. C. Carey. J. Phys. Chem., 84 : 1044, ( 1980 ).
30. J. – M. Chen, T. –Z. Su, C. Y. Mou, J. Phys. Chem., 90 ( 1980 ) 2418.
31. G. Porte and J. Appell. J. Phys. Chem., 85 ( 1981 ) 2511.
32. H. P. Lin and C. Y. Mou Acc. Chem. Rev. 35 ( 2002 ) 927.
33. S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki and T. Tatsumi. J. Am. Chem. Soc. 124 ( 2002 ) 13962.
34. J. Dorshow, R. B. and Biggs, C. A, Bunton, and D. F. Nicoll. J. Phys. Chem., 87 (1983 ) 1409.
35. 陸仲文, 碩士論文, 國立台灣大學化學系 ( 1997 )
36. Ionescu, L. G. and Romansco, L. S. Solution Chemistry of Surfactants, ( 1978 ) I. Mittald. P789.
37. Anderson M. T. et al. Chem. Matter. 10 ( 1998 ) 311.
38. R. Zana, ; in Zana, R. ( Ed. ) Adv. Colloid Interface Sci. 57 ( 1995 ) 1.
39. R. Zana, S. Yiv, C. Strazielle, Lianos, P. J. Colloid Interface Sci. 80 ( 1981 ) 208.
40. P. Mukerjee, Pure Appl. Chem. 52 ( 1980 ) 1317.
41. R. K. Iler, The Chemistry of Silica, ( 1979 ), John Wiley, New York.
42. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey . Chem. Mater 6 ( 1994 ) 1176.
43. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 70 ( 1985 ) 301
44. W. Wang, S. Xie, W. Zhou and A. Sayari. Chem. Mater (2004 ) Received February 11
45. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao. Angew. Chem. 115 ( 2003 ) 3254.
46. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon. J. Meter. Chem, 12 ( 2002 ) 3533.
47. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter. 15 ( 2003 ) 1385.
48. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc. 49 ( 2002 ) 981.
49. V. Alfredsson and M. W. Anderson. Chem. Mater. 8 ( 1996 ) 1141.
50. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater. 8 (1996 ) 1147.
51. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater. 13 ( 2001 ) 2247.
52. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B. 106 ( 2002 ) 2552.
53. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc. 123 ( 2001 ) 5014.
54. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc. 123 ( 2001 ) 691.
55. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. 14 ( 2002 ) 1144.
56. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng – Shou Xiao. Angew. Chem. Int. Ed. 7 ( 2001 ) 1258.
57. Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin. J. Phys. Chem. B. 105 ( 2001 ) 7963.
58. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D. Stukey. Chem. Mater. 12 (2002 ) 2448.
59. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater. 15 ( 2003 ) 2161.
60. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem. 14 ( 2004 ) 951.
61. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. 48 ( 2000 ) 289.
62. E. B. Erlein. Angew. Chem. Int. Ed. 42 ( 2003 ) 614.
63. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 42 ( 2003 ) 413.
64. F. Noll, M. Sumper and N. Hampp. Nano. Lett. 2 ( 2002 ) 91.
65. Q. Huo, R. Leon, P. M. Petroff and G. D. Stucky. Sciemce, 268 ( 1995 ) 1334.
66. S. Che, Y. Sakamoto, H. Yoshitake, O. Terasaki and T. Tatsumi. J. Phys. Chem. B, 105 ( 2001 ) 10565.
67. L. X. Dai, K. Tabata, E. Suzuki and T. Tatsumis. Chem. Mater. 13 ( 2001 ) 208.
68. A. Vinu, J. Dedecek, V. Murugesan and M. Hartmann. Chem. Mater. 14 ( 2002 ) 2433.
69. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. T. Schmitt, C. T – W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, J. L. Schlenker. J. Am. Chem. Soc. 114 ( 1992 ) 10834.
70. E. W, Lang, H. D. Lϋdemann and L. Piculell, J. Chem. Phys. 81 ( 1984 ) 3820.
71. F. Chen, L. Huang and Q. Li. Chem. Mater. 9 ( 1997 ) 2685.
72. S. Jun, S. H. Joo, R. Ryoo, M. Kurk, M. Jaroniec, Z. liu, T. Ohsuna and O. Terasaki. J. Am. Chem. Soc. 122 ( 2000 ) 10712.
73. D. Zhao and D. Goldfarb. Chem. Meter. 8 ( 1996 ) 2571.
74. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stuckyk, H. J. Shin and R. Ryoo. Nature. 23 ( 2000 ) 449.
75. J. Kim, S. K. Kim and R. Ryoo. Chem. Commun. ( 1998 ) 259.
76. S. Guan, S. Inagaki, T. Ohsuna and O. Terasaki. J. Am. Chem. Soc. 122 ( 2000 ) 5660.
77. M. P. Kapoor and S. Inagaki. Chem. Mater. 14 ( 2002 ) 3509.
78. S. Che, Y. Sakamoto, Q. Terasaki and T. Tatsumi. Chem. Mater. 13 ( 2001 ) 2237.
79. C. Yu, B. Tian, J. Fan, G. D. Stucky and D. Zho. J. Am. Chem. Soc. 124 ( 2002 ) 4556.
80. S. Mann,” Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry”, United Kingdom, 2001.
81. M. C. Chao, D. S. Wang, H. P. Lin and C. Y. Mou. J. Mater. Chem. 13 ( 2003 ) 2853.
82. M. C. Chao, H. P. Lin D. S. Wang and C. Y. Mou. Chem. Letters. 4
( 2004 ) 374.
83.T. Yokoi, H. Yoshitake and T. Tatsumi. Chem. Mater. 15 ( 2003 ) 4536.
84.A. B. Bourlinos, Th. Karakostas and D. Petridis. J. Phys. Chem. B. 107( 2003 ) 920.