簡易檢索 / 詳目顯示

研究生: 李秉威
Li, Bing-Wei
論文名稱: 針對昂貴計算假設下的局部貝氏RBF 最佳化方法
Finding optimal points for expensive functions via local Bayesian adaptive RBF-based approach
指導教授: 陳瑞彬
Chen, Ray-Bing
學位類別: 碩士
Master
系所名稱: 管理學院 - 數據科學研究所
Institute of Data Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 33
中文關鍵詞: 電腦實驗最佳化預期改進馬可夫鏈蒙地卡羅徑向基函數
外文關鍵詞: Computer experiment, Optimization, Expected improvement, Markov chain Monte Carlo, Radial basis functions
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最佳化對於當前電腦實驗以及物理方面是非常重要的一個問題,在本研究中探討最佳化問題在於昂貴函數計算假設下的問題。在過去做此方法是透過重複以下兩個步驟來解決此問題,首先以現有資訊建立代理模型,其次透過代理模型選取下一個點並加入現有資訊中。在本研究中代理模型採用Bayesian adaptive Radial Basis Function (BaRBF)來建模並依據Sample Expected Improvement (SEI)選擇標準來進行選點。BaRBF是採用馬可夫鏈蒙地卡羅對徑向基函數進行參數估計,而SEI是根據EI改進的選擇標準,是為了可以應用在BaRBF模型上。在本文中將提出局部貝式演算法(LBaRBF),其起始概念為快速探索局部最佳值,當演算法探索到局部最佳值時,就重啟此算法,來探索下一個局部最佳值,如果演算法重啟足夠多次,達到探索全部的局部最佳值,也就代表了此演算法找到了全域最佳值。另外由於原先所採用的重啟架構所耗費成本過大,所以額外提出了逃脫局部貝氏演算法(E-LBaRBF),透過加入一些新的探索點去改變現有的代理模型平面使其在不放棄所有資訊下,也可以達到相同效果。最後在模擬測試部分展示新的逃脫架構比起原先的重啟效益來的更好。

    Optimization is a very issue problem for current computer experiments and physics. In this study, the expensive computational cost is considered. In the past, this optimization problem can be solved by repeating the following two steps. First, we build a surrogate model based on the current explored point set, and then add the next point through the surrogate model to the explored point set. In this study, the Bayesian adaptive Radial Basis Function (BaRBF) is adopted for the surrogate construction, and the Sample Expected Improvement (SEI) criterion is used to choose the next explored point. In this thesis, the local Bayesian RBF algorithm (LBaRBF) is proposed. Its key concept is to quickly explore the local optimal value. When the LBaRBF identifies a locally optimal point, it restarts the algorithm to identify another one. Thus once the LBaRBF can find all optimal points, it means that the global best one is also identified. In addition, due to the expensive computational cost assumption, we propose another algorithm, called escaped LBaRBF(E-LBaRBF). Instead of the restart step in LBaRBF, E-LBaRBF will update the surrogate model by adding extract explored points. In this thesis, several numerical experiments are used to demonstrate the performances of the proposed two methods.

    摘要i Abstract ii 英文延伸摘要iii 目錄vii 表目錄viii 圖目錄ix Chapter 1. 序論1 1.1. 研究背景與動機 1 1.2. 研究目的 1 1.3. 章節介紹 2 Chapter 2. 文獻回顧3 2.1. 隨機反應曲面法(Stochastic Response Surface Method) 3 2.2. 貝葉斯徑向基函數(Bayesian Radial Basis Function) 5 2.2.1. 先驗機率 5 2.2.2. 後驗採樣 7 2.2.3. 超參數 10 2.3. 選擇標準(selection criterions) 10 2.3.1. 抽樣預期改進(Sampled Expected Improvement) 10 2.3.2. 最小相距距離11 Chapter 3. 局部貝氏最佳化演算法12 3.1. 代理模型設置12 3.2. 局部貝氏演算法(LBaRBF) 13 3.3. 逃脫局部貝氏演算法(E-LBaRBF) 16 Chapter 4. 模擬測試18 4.1. 模擬設置18 4.1.1. LMSRS(TPS) 18 4.1.2. LMSRS(Gaussian) 19 4.1.3. 演算法參數設置19 4.2. 二維函數20 4.3. 四維函數29 Chapter 5. 結論32 References 33

    Andrieu, C., Freitas, N. d., & Doucet, A. (2001). Robust full bayesian learning for radial basis networks. Neural computation, 13(10), 2359–2407.
    Box, G. E., Draper, N. R., et al. (1987). Empirical model-building and response surfaces (Vol. 424). Wiley New York.
    Chen, R.-B., Wang, W., & Wu, C. J. (2017). Sequential designs based on bayesian uncertainty quantification in sparse representation surrogate modeling. Technometrics, 59(2), 139–152.
    Chen, R.-B., Wang, Y., & Wu, C. J. (2020). Finding optimal points for expensive functions using adaptive rbf-based surrogate model via uncertainty quantification. Journal of Global Optimization, 77, 919–948.
    Chipman, H., Ranjan, P., & Wang, W. (2012). Sequential design for computer experiments with a flexible bayesian additive model. Canadian Journal of Statistics, 40(4), 663–678.
    Eriksson, D., Bindel, D., & Shoemaker, C. A. (2019). pysot and poap: An event-driven asynchronous framework for surrogate optimization. arXiv preprint arXiv:1908.00420.
    Fasshauer, G. E., & Zhang, J. G. (2007). On choosing “optimal"shape parameters for rbf approximation. Numerical Algorithms, 45(1-4), 345–368.
    George, E. I., & McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.
    Gutmann, H.-M. (2001). A radial basis function method for global optimization. Journal of global optimization, 19(3), 201–227.
    Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of global optimization, 21(4), 345–383.
    Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4), 455–492.
    Koutsourelakis, P.-S. (2009). Accurate uncertainty quantification using inaccurate computational models. SIAM Journal on Scientific Computing, 31(5), 3274–3300.
    Mockus, J., Tiesis, V., & Zilinskas, A. (1978). The application of bayesian methods for
    seeking the extremum. Towards global optimization, 2(117-129), 2.
    Morris, M. D., & Mitchell, T. J. (1995). Exploratory designs for computational experiments. Journal of statistical planning and inference, 43(3), 381–402.
    Regis, R. G., & Shoemaker, C. A. (2007). A stochastic radial basis function method for the global optimization of expensive functions. INFORMS Journal on Computing, 19(4), 497–509.
    Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis with g-prior distributions. Bayesian inference and decision techniques.

    無法下載圖示 校內:2026-08-05公開
    校外:2026-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE