簡易檢索 / 詳目顯示

研究生: 王逸鎧
Wang, I-Kai
論文名稱: 多變數最大功率點追蹤法應用在太陽能電力系統之比較研究
Comparative Study of the Photovoltaic Power System Using Multivariable Maximum Power Point Tracking Method
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 分散式太陽能發電系統最大功率點追蹤(MPPT)多變數最佳化最陡梯度法粒子群演算法(PSO)
外文關鍵詞: Distributed photovoltaic (DPV) system, maximum power point tracking(MPPT), Multivariable Maximum Power Point Tracking, Steepest Descent Method, Particle Swarm Optimization (PSO)
相關次數: 點閱:150下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是針對兩種多變數最大功率點追蹤法,應用在分散式太陽能發電系統上之效能評估與比較。此兩種演算法分別為最陡梯度法(Steepest Descent Method)和粒子群演算法(Particle Swarm Optimization ,PSO),由於多變最大功率點追蹤法應用於分散式太陽能發電系統時可有效的降低系統所需之硬體元件數量,進而降低分散式發電系統建構之成本,因此驗證此類演算法可有效廣泛的應用於系統上,有助於太陽能發電系統之發展。在過去研究中,此兩種方法大多都是適用於單純串聯或並聯之分散式系統,而本文將針對同時存在串並聯組合之太陽能電池模組發電系統來建構模擬系統已進行MPPT追蹤實驗。
    在模擬部分採用了Multisim電路模擬軟體與Labview程式來建構出模擬系統,利用Multisim程式可模擬出系統電路在追蹤過程中之暫態變化以評估其與實際應體搭配之可行性,而利用Labview軟體則是可較迅速的模擬出多次追蹤過程和多種串並聯組合,也評估出演算法在各種架構下之皆可達到一定之效能。
    實驗部分則是採用實驗室CSSS-090A之太陽能電池,來進行四片太陽能電池模組串聯和分別將兩模組各自串聯後再將其並聯此兩種架構下,兩種演算法之追蹤成效,驗證此兩種演算法在分散式太陽能發電系統下之效能,並且與模擬結果比較驗證模擬之可靠度。

    The research evaluates and compares the application of two Multivariate Maximal Power Point Tracking Methods on Distributed Photovoltaic System. These two algorithms are Steepest Descent Method and Particle Swarm Optimization (PSO). Since these types of tracking methods reduce the elements needed in distributed photovoltaic system hardware, the practical application would then reduce the cost of photovoltaic system. The paper will focus on the MPPT experiments of the stimulation systems according to different series-parallel combinations of photovoltaic system.

    There are two programs used to simulate systems: Multisim and Labview; in order to simulate transient changes of circuit and then further evaluate the best algorithm and hardware collocations. In addition, through tracking with various series-parallel combinations, the algorithm can achieve certain performance with different configurations.

    The experiment is composed of four CSSS-090A photovoltaic panels. Through different series-parallel combinations to implement both Maximum Power Point Tracking Methods, the results show that both Steepest Descent Method and Particle Swarm Optimization are able to track, and the results are close to stimulations, while the Steepest Descent Method has shown a better tracking efficiency.

    摘要 II 致謝 VI 目錄 VII 表目錄 X 圖目錄 XI 符號表 XIII 第1章、 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 5 1.3 研究方法 9 1.4 論文架構 10 第2章、 太陽能發電系統介紹 11 2.1 太陽能電池特性 11 2.1.1 太陽能電池等效電路 12 2.1.2 太陽能特性曲線(V-I Curve, P-V Curve) 13 2.2 直流轉換器原理 15 2.3 集中式太陽能發電系統 18 2.4 分散式太陽能發電系統 19 2.4.1 傳統分散式太陽能發電系統 19 2.4.2 星狀分散式太陽能發電系統 21 2.4.3 分散式太陽能發電系統最大功率點追蹤之穩壓機制 22 2.5 最大功率點追蹤技術 23 2.5.1 最大功率點追蹤架構 23 2.5.2 傳統最大功率點追蹤演算法 24 2.5.3 二次式極值法介紹 26 2.5.4 最大功率點追蹤技術之應用 27 第3章、 多變數最大功率點追蹤法介紹 28 3.1 最佳化問題 28 3.2 應用於多變數最大功率點追蹤法太陽能發電系統架構 29 3.3 最陡梯度法配合黃金分割策略 32 3.3.1 最陡梯度法原理 32 3.3.2 應用黃金分割策略 33 3.3.3 最陡梯度法流程圖 35 3.3.4 最陡梯度法應用相關計算與收斂條件 36 3.4 粒子群演算法 37 3.4.1 標準粒子群演算法 37 3.4.2 粒子群演算法相關參數 38 3.4.3 粒子群演算法架構及流程 40 3.4.4 初始位置設定 41 3.4.5 收斂條件 42 3.4.6 重新啟動追蹤設計 42 3.4.7 多核心運算技術 43 第4章、 分散式太陽能發電系統 受遮蔭條件下之電腦模擬 44 4.1 太陽能電池特性曲線模擬 44 4.2 使用MULTISIM進行太陽能發電系統模擬 45 4.2.1 Multisim 軟體建模原理 45 4.2.2 太陽能電池搭配Converter之暫態反應模擬 48 4.2.3 最陡梯度法簡易模擬分析 50 4.2.4 最陡梯度法暫態模擬分析 53 4.3 使用LABVIEW進行太陽能發電系統模擬 56 4.3.1 應用Labview進行系統模擬之建模原理 56 4.3.2 模擬實驗操作方法和相關計算說明 57 4.3.3 最陡梯度法模擬分析 63 4.3.4 粒子群演算法模擬分析 64 第5章、 多變數太陽能發電系統 實驗規劃與結果 67 5.1 分散式太陽能發電實驗系統配置 67 5.1.1 實驗場與實驗架構 67 5.1.2 實驗使用硬體規格 68 5.1.3 實驗操作說明 70 5.2 最陡梯度法實驗結果 71 5.2.1 迴圈時間測試 71 5.2.2 4S和2P2S實驗結果 74 5.3 粒子群算法實驗結果 76 5.3.1 迴圈時間測試 76 5.3.2 4S和2P2S實驗結果 77 5.4 兩種演算法實驗綜合比較 81 5.5 實驗與模擬之比較 81 5.6 2P4S系統實驗 83 第6章、 結論與建議 86 6.1 結論 86 6.2 建議與未來展望 88 參考文獻 89

    [1] 台灣電力公司歷年發電量占比,http://www.taipower.com.tw/,查詢日期:2015/01。
    [2] "GLOBAL MARKET OUTLOOK 2014-2018", European Photovoltaic Industry Association (EPIA).
    [3] 鄭煜騰,獨立式太陽能電力擷取系統應用研究,國立成功大學系統所碩士論文,2011年。
    [4] J. H. R. Enslin, M. S. Wolf, D. B. Snyman, and W. Swiegers, "Integrated photovoltaic maximum power point tracking converter," IEEE Transactions on Industrial Electronics, vol. 44, pp. 769-773, 1997.
    [5] G. R. Walker and P. C. Sernia, "Cascaded DC-DC converter connection of photovoltaic modules," IEEE Transactions on Power Electronics, vol. 19, pp. 1130-1139, 2004.
    [6] M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, "Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach," IEEE Transactions on Aerospace and Electronic Systems, vol. 47, pp. 367-380, 2011.
    [7] C. A. Ramos-Paja, G. Spagnuolo, G. Petrone, M. Vitelli, and J. D. Bastidas, "A multivariable MPPT algorithm for granular control of photovoltaic systems," 2010 IEEE International Symposium on Industrial Electronics (ISIE), pp. 3433-3437, 2010.
    [8] 陳柏龍,分散式太陽能發電系統設計與實測之研究,國立成功大學系統所碩士論文,2012年。
    [9] 柯仕鴻,新穎的最大功率點追蹤技術應用在分散式太陽能擷取系統設計之研究,國立成功大學系統所博士論文,2013年。
    [10] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 36)," Progress in Photovoltaics: Research and Applications, vol. 18, pp. 346-352, 2010.
    [11] D. Sera, R. Teodorescu, and P. Rodriguez, "PV panel model based on datasheet values," IEEE International Symposium on Industrial Electronics, 2007. ISIE 2007, pp. 2392-2396, 2007.
    [12] R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics," Kluwer Academic Publishers, 2nd edition, 2001.
    [13] G. Adinolfi, N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli,"Energy efficiency effective design of DC/DC Converters for DMPPT PV application",Industrial Electronics,2009.
    [14] H. Patel and V. Agarwal, "MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics," IEEE Transactions on Energy Conversion, vol. 23, pp. 302-310, 2008.
    [15] H. Patel and V. Agarwal, "Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions," IEEE Transactions on Industrial Electronics, vol. 55, pp. 1689-1698, 2008.
    [16] M. Miyatake, T. Inada, I. Hiratsuka, Z. Hongyan, H. Otsuka, and M. Nakano, "Control characteristics of a fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded," The 4th International, vol.2, pp. 816-821, 2004.
    [17] 羅晨峰,分散式太陽能發電系統之功率優化器設計與實作研究,國立成功大學系統所碩士論文,2013年。
    [18] Academic Publishers, 2nd edition, 2001.N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of perturb and observe maximum power point tracking method," IEEE Transactions on Power Electronics, vol. 20, pp. 963-973, 2005.
    [19] 連品均,分散式太陽能系統之最大功率追蹤器開發,國立成功大學系統所碩士論文,2014年。
    [20] V. Salas, E. Olías, A. Barrado, and A. Lázaro, "Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems," Solar Energy Materials and Solar Cells, vol. 90, pp. 1555-1578, 2006.
    [21] R. M. Chao, S. H. Ko, F. S. Pai, I. H. Lin, and C. C. Chang, "Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm," Solar Energy, vol. 83, pp. 2177-2185, 2009.
    [22] R. M. Chao and F. S. Pai, "A New Algorithm to Photovoltaic Power Point Tracking Problems With Quadratic Maximization," IEEE Transactions on Energy Conversion, vol. 25, pp. 262-264, 2010.
    [23] S. H. Ko and R. M. Chao, "Photovoltaic dynamic MPPT on a moving vehicle," Solar Energy, vol. 86, pp. 1750-1760, 2012.
    [24] Steven C. Chapra 著 高啟洲 譯,"應用數值方法",滄海圖書,台中市,p.171,2010。
    [25] T. Weise, Global Optimization Algorithms – Theory and Application, Germany: it-weise.de (self-published), Available: http://www.it-weise.de/, 2009,Retrieved-date:2015/01.
    [26] J. Kennedy and R. Eberhart, "Particle swarm optimization," IEEE International Conference on Neural Networks, 1995. Proceedings, pp. 1942-1948 vol.4, 1995.
    [27] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS '95, pp. 39-43, 1995.
    [28] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, pp. 69-73, 1998.
    [29] Shi, Y. and Eberhart, R. C. "Parameter selection in particle swarm optimization, " In Evolutionary Programming VII: Proc. EP98, New York: Springer-Verlag, pp. 591 -600, 1998.
    [30] Eberhart and S. Yuhui, "Particle swarm optimization: developments, applications and resources," in Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, pp. 81-86 vol. 1, 2001.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE