簡易檢索 / 詳目顯示

研究生: 蘇費翠
Sari, Fitri Nur Indah
論文名稱: 氮參雜石墨稀於高能量密度超級電容之應用
High Energy Density of Supercapacitor Based on N-doped Graphene
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 高能量密度超級電容參雜氮之石墨烯石墨烯氧化物還原態雙層電容非對稱性超級電容
外文關鍵詞: high energy density of supercapacitor, NDG, RGO, double layer capacitance, asymmetric supercapacitor
相關次數: 點閱:98下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是著眼於發展高能量密度參雜氮之石墨烯超級電容器,且經過比電容以及電位窗的參數最佳化。利用簡易且有效率的微波輔助水熱法,來達到石墨烯的參雜與還原同步化。關於材料結構分析上,以下就化學分析以及電容行為做詳細探討。我們希望氮參雜進入石墨烯的晶格裡,藉由調整微波輔助水熱法中的溫度與時間來進行調控。關於氮參雜以及含氧官能基團方面之表現,也確實增強在雙層結構的電容器上,也比石墨烯氧化物還原態要來的優秀許多。因此氮參雜之石墨烯之Csp 值比石墨烯氧化物還原態高上大約兩倍。參雜氮之石墨烯在超級電容器的表現上是相當優秀的,可以藉由儀器分析的結果窺知一二,從電化學阻抗頻譜中得到相當小的等價串連電阻、高電子傳導率、離子擴散性佳、以及電荷遷移率高。因此,本研究闡明一個非對稱性的超級電容器,利用參雜氮之石墨烯當作陽極,利用SnO2-RGO 當作陰極,並且在濃度2M 的硫酸溶液裡。一般來說,非對稱性的超級電容跟對稱性超級電容相互比較,前者會有較高的能量密度。

    This study has been focused on the development of high energy density of nitrogen-doped graphene (NDG)-based supercapacitor via optimizing the specific capacitance and potential window. Doping and reduction of graphene have been done simultaneously by facile and efficient method, microwave-assisted hydrothermal (MHT). The structural analysis, chemical analysis and capacitive behavior have been discussed in detailed. The desirable N-dopant within graphene lattice could be tuned by controlling the temperature and time of MHT. The presence of the N-dopant and remaining of oxygen-functional groups could be enhanced the double layer capacitance higher than reduced graphene oxide (RGO). Therefore, the Csp value from NDG is around two times larger than RGO. NDG also has excellent performance of supercapacitor by showing the high electrical conductivity that was shown from EIS analysis with small value of equivalent series resistance (ESR), good ionic diffusion, and good charge transfer (small contact resistance). This study also demonstrated an asymmetric supercapacitor by utilizing the NDG as anode and SnO2-RGO as cathode in 2 M H2SO4 aqueous electrolyte. Generally, the asymmetric supercapacitor showed higher energy density compares with symmetric supercapacitor.

    Acknowledgements..........................................ii Abstract (Chinese).......................................iii Abstract..................................................iv Contents...................................................v List of Tables...........................................vii List of Figures.........................................viii Chapter 1 Introduction ....................................1 1.1 Preface ...........................................1 1.1.1 Enhancement Energy Density by Optimization the Specific Capacitance.......................................2 1.1.2 Enhancement Energy Density by Enlarge the Working Voltage....................................................4 1.2 Research Objectives and Motivation.................5 Chapter 2 Theoretical Background...........................6 2.1 Principle of Energy storage in Supercapacitor......6 2.1.1 The energy storage mechanism of EDLC...............6 2.1.2 The energy storage mechanism of pseudocapacitance..8 2.2 Electrode Material for Supercapacitor..............9 2.2.1 Electrode Requirements.............................9 2.2.2 EDLC Electrode Materials..........................14 2.2.3 Pseudocapacitance Electrode Materials.............18 2.3 The electrolytes..................................28 2.4 Asymmetric Supercapacitor.........................31 Chapter 3 Experimental Section............................33 3.1 Materials.........................................33 3.2 Sample Preparation................................33 3.2.1 Preparation of N-doped Graphene (NDG).............33 3.2.2 Preparation of SnO2-RGO Nanocomposites............34 3.3 Characterization..................................35 3.3.1 X-Ray Diffraction (XRD)...........................35 3.3.2 Raman Spectroscopy................................35 3.3.3 Scanning Electron Microscopy (SEM)................35 3.3.4 Transmission Electron Microscopy (TEM)............35 3.3.5 X-Ray Photoemission Spectroscopy (XPS)............36 3.3.6 Electrochemical Measurement.......................36 Chapter 4 Results and Discussion..........................39 4.1 N-doped Graphene (NDG)............................39 4.1.1 Morphology and Structure Characterization.........39 4.1.2 Electrochemical characterization..................54 4.2 SnO2-RGO Nanocomposites ..........................59 4.2.1 Morphology and structure Characterization.........59 4.2.2 Electrochemical Characterization..................61 4.3 An Asymmetric Supercapacitor......................63 Chapter 5 Conclusions.....................................69 References................................................71

    [1]S. Liang, X. Zhu, P. Lian, W. Yang, and H. Wang, "Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries," Journal of Solid State Chemistry, vol. 184, pp. 1400-1404, 2011.
    [2]J. Wang, Y. Xu, X. Chen, and X. Du, "Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite," Journal of Power Sources, vol. 163, pp. 1120-1125, 2007.
    [3]F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, et al., "A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density," Energy & Environmental Science, vol. 6, p. 1623, 2013.
    [4]W. Wei, X. Cui, W. Chen, and D. G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes," Chem Soc Rev, vol. 40, pp. 1697-721, Mar 2011.
    [5]L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chem Soc Rev, vol. 38, pp. 2520-31, Sep 2009.
    [6]B. E. Conway and W. G. Pell, "Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices," Journal of Solid State Electrochemistry, vol. 7, pp. 637-644, 2003.
    [7]P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors.pdf," nature materials, vol. vol 7, pp. 845-854, 2008.
    [8]F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, et al., "One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors," Nanotechnology, vol. 20, p. 455602, Nov 11 2009.
    [9]R. B. Rakhi, W. Chen, D. Cha, and H. N. Alshareef, "High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes," Journal of Materials Chemistry, vol. 21, p. 16197, 2011.
    [10]H.-P. Cong, X.-C. Ren, P. Wang, and S.-H. Yu, "Flexible graphene–polyaniline composite paper for high-performance supercapacitor," Energy & Environmental Science, vol. 6, p. 1185, 2013.
    [11]D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, et al., "Nitrogen doping effects on the structure of graphene," Applied Surface Science, vol. 257, pp. 9193-9198, 2011.
    [12]Y.-H. Lee, K.-H. Chang, and C.-C. Hu, "Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes," Journal of Power Sources, vol. 227, pp. 300-308, 2013.
    [13]Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, et al., "Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor," Adv Mater, vol. 24, pp. 5610-6, Nov 2 2012.
    [14]B. Jiang, C. Tian, L. Wang, L. Sun, C. Chen, X. Nong, et al., "Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction," Applied Surface Science, vol. 258, pp. 3438-3443, 2012.
    [15]L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, et al., "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage," RSC Advances, vol. 2, p. 4498, 2012.
    [16]K. Gopalakrishnan, A. Govindaraj, and C. N. R. Rao, "Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis," Journal of Materials Chemistry A, vol. 1, p. 7563, 2013.
    [17]Y. Qiu, X. Zhang, and S. Yang, "High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets," Phys Chem Chem Phys, vol. 13, pp. 12554-8, Jul 21 2011.
    [18]M. Sathish, S. Mitani, T. Tomai, and I. Honma, "Supercritical fluid assisted synthesis of N-doped graphene nanosheets and their capacitance behavior in ionic liquid and aqueous electrolytes," Journal of Materials Chemistry A, vol. 2, p. 4731, 2014.
    [19]Y. Lu, F. Zhang, T. Zhang, K. Leng, L. Zhang, X. Yang, et al., "Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor," Carbon, vol. 63, pp. 508-516, 2013.
    [20]H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, et al., "Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes," Nano Lett, vol. 11, pp. 2472-7, Jun 8 2011.
    [21]Z. Lin, G. Waller, Y. Liu, M. Liu, and C.-P. Wong, "Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction," Advanced Energy Materials, vol. 2, pp. 884-888, 2012.
    [22]J. W. Lee, J. M. Ko, and J.-D. Kim, "Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes," Electrochimica Acta, vol. 85, pp. 459-466, 2012.
    [23]Y. Zhang, B. Cao, B. Zhang, X. Qi, and C. Pan, "The production of nitrogen-doped graphene from mixed amine plus ethanol flames," Thin Solid Films, vol. 520, pp. 6850-6855, 2012.
    [24]L. Demarconnay, E. Raymundo-Piñero, and F. Béguin, "Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor," Journal of Power Sources, vol. 196, pp. 580-586, 2011.
    [25]J. Zhang, J. Jiang, H. Li, and X. S. Zhao, "A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes," Energy & Environmental Science, vol. 4, p. 4009, 2011.
    [26]J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, et al., "Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density," Advanced Functional Materials, vol. 22, pp. 2632-2641, 2012.
    [27]Z. Li, T. Chang, G. Yun, J. Guo, and B. Yang, "2D tin dioxide nanoplatelets decorated graphene with enhanced performance supercapacitor," Journal of Alloys and Compounds, vol. 586, pp. 353-359, 2014.
    [28]C.-M. Chuang, C.-W. Huang, H. Teng, and J.-M. Ting, "Hydrothermally synthesized RuO2/Carbon nanofibers composites for use in high-rate supercapacitor electrodes," Composites Science and Technology, vol. 72, pp. 1524-1529, 2012.
    [29]J.-G. Wang, Y. Yang, Z.-H. Huang, and F. Kang, "A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes," Carbon, vol. 61, pp. 190-199, 2013.
    [30]Z.-H. Gao, H. Zhang, G.-P. Cao, M.-F. Han, and Y.-S. Yang, "Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor," Electrochimica Acta, vol. 87, pp. 375-380, 2013.
    [31]X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, et al., "High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode," Nano Lett, vol. 13, pp. 2628-33, Jun 12 2013.
    [32]E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, and F. Béguin, "Supercapacitors based on conducting polymers/nanotubes composites," Journal of Power Sources, vol. 153, pp. 413-418, 2006.
    [33]J. Wang and S. Kaskel, "KOH activation of carbon-based materials for energy storage," Journal of Materials Chemistry, vol. 22, p. 23710, 2012.
    [34]B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, et al., "Highly mesoporous and high surface area carbon: A high capacitance electrode material for EDLCs with various electrolytes," Electrochemistry Communications, vol. 10, pp. 795-797, 2008.
    [35]Y. J. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, et al., "Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons," Carbon, vol. 42, pp. 1491-1500, 2004.
    [36]J. Huang, B. G. Sumpter, and V. Meunier, "Theoretical model for nanoporous carbon supercapacitors," Angew Chem Int Ed Engl, vol. 47, pp. 520-4, 2008.
    [37]C. Kim and K. S. Yang, "Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning," Applied Physics Letters, vol. 83, p. 1216, 2003.
    [38]X. Liu, Y. Wang, L. Zhan, W. Qiao, X. Liang, and L. Ling, "Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors," Journal of Solid State Electrochemistry, vol. 15, pp. 413-419, 2010.
    [39]H.-C. Huang, C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, J.-M. Ting, and H. Teng, "Photocatalytically Reduced Graphite Oxide Electrode for Electrochemical Capacitors," The Journal of Physical Chemistry C, vol. 115, pp. 20689-20695, 2011.
    [40]A. Lewandowski, M. Zajder, E. Frackowiak, and F. Béguin, "Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte," Electrochemistry Acta, vol. 46, pp. 2777-2780, 2001.
    [41]Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, et al., "High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites," Adv Mater, vol. 23, pp. 791-5, Feb 8 2011.
    [42]W. Lu, R. Hartman, L. Qu, and L. Dai, "Nanocomposite Electrodes for High-Performance Supercapacitors," The Journal of Physical Chemistry Letters, vol. 2, pp. 655-660, 2011.
    [43]C.-M. Chuang, C.-W. Huang, H. Teng, and J.-M. Ting, "Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors," Energy & Fuels, vol. 24, pp. 6476-6482, 2010.
    [44]Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, et al., "Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density," Advanced Functional Materials, vol. 21, pp. 2366-2375, 2011.
    [45]E. Frackowiak, "Supercapacitors Based on Carbon Materials and Ionic Liquids," Journal Brazil Chemical Society, vol. 17, pp. 1074-1082, 2006.
    [46]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., "Supercapacitor Devices Based on Graphene Materials," The Journal of Physical Chemistry C, vol. 113, pp. 13103-13107, 2009.
    [47]X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S. Z. Qiao, et al., "Preparation of capacitor's electrode from sunflower seed shell," Bioresour Technol, vol. 102, pp. 1118-23, Jan 2011.
    [48]S. Zhao, C.-Y. Wang, M.-M. Chen, J. Wang, and Z.-Q. Shi, "Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor," Journal of Physics and Chemistry of Solids, vol. 70, pp. 1256-1260, 2009.
    [49]T. Bordjiba, M. Mohamedi, and L. H. Dao, "New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources," Advanced Materials, vol. 20, pp. 815-819, 2008.
    [50]C. O. Ania, V. Khomenko, E. Raymundo-Piñero, J. B. Parra, and F. Béguin, "The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template," Advanced Functional Materials, vol. 17, pp. 1828-1836, 2007.
    [51]C. Portet, Z. Yang, Y. Korenblit, Y. Gogotsi, R. Mokaya, and G. Yushin, "Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte," Journal of The Electrochemical Society, vol. 156, p. A1, 2009.
    [52]A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, "Templated mesoporous carbons for supercapacitor application," Electrochimica Acta, vol. 50, pp. 2799-2805, 2005.
    [53]J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nat Nanotechnol, vol. 3, pp. 206-9, Apr 2008.
    [54]A. A. Balandin, S. Ghosh, W. Bao, i. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior Thermal Conductivity of Single-Layer Graphene," Nano Lett, vol. 8, pp. 902-907, 2008.
    [55]Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, et al., "Carbon-based supercapacitors produced by activation of graphene," Science, vol. 332, pp. 1537-41, Jun 24 2011.
    [56]M. D. Stoller, C. W. Magnuson, Y. Zhu, S. Murali, J. W. Suk, R. Piner, et al., "Interfacial capacitance of single layer graphene," Energy & Environmental Science, vol. 4, p. 4685, 2011.
    [57]M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors," Nano Lett, vol. 8, pp. 3498-3502, 2008.
    [58]X. Yang, J. Zhu, L. Qiu, and D. Li, "Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors," Adv Mater, vol. 23, pp. 2833-8, Jul 5 2011.
    [59]L. R. Radovic and B. Bockrath, "On the Chemical Nature of Graphene Edges: Origin of Stability and Potential for Magnetism in Carbons Materials," Journal of American Chemical Society, vol. 127, pp. 5917-5927, 2005.
    [60]C. Chen, B. Liang, A. Ogino, X. Wang, and M. Nagatsu, "Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited by Microwave-Excited
    Surface-Wave Plasma Treatment," Journal Physical Chemistry C, vol. 113, pp. 7659–7665, 2009.
    [61]Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, "High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes," Carbon, vol. 49, pp. 573-580, 2011.
    [62]D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Lett, vol. 9, pp. 1752-1758, 2009.
    [63]B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J. R. Gong, "Controllable N-doping of graphene," Nano Lett, vol. 10, pp. 4975-80, Dec 8 2010.
    [64]X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, et al., "N-doping of graphene through electrothermal reactions with ammonia," Science, vol. 324, pp. 768-71, May 8 2009.
    [65]L. L. Zhang, X. Zhao, H. Ji, M. D. Stoller, L. Lai, S. Murali, et al., "Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon," Energy & Environmental Science, vol. 5, p. 9618, 2012.
    [66]G. Lota, K. Lota, and E. Frackowiak, "Nanotubes based composites rich in nitrogen for supercapacitor application," Electrochemistry Communications, vol. 9, pp. 1828-1832, 2007.
    [67]D. W. Wang, F. Li, L. C. Yin, X. Lu, Z. G. Chen, I. R. Gentle, et al., "Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions," Chemistry, vol. 18, pp. 5345-51, Apr 23 2012.
    [68]X. Lang, A. Hirata, T. Fujita, and M. Chen, "Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors," Nat Nanotechnol, vol. 6, pp. 232-6, Apr 2011.
    [69]V. Subramanian, W. Zhu, R. Vajtai, P. M. Ajayan, and B. Wei, "Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures," journal Physical Chemistry B, vol. 105, pp. 20207-20214, 2005.
    [70]C.-C. Hu, W.-C. Chen, and K.-H. Chang, "How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors," Journal of The Electrochemical Society, vol. 151, p. A281, 2004.
    [71]O. Ghodbane, J. L. Pascal, and F. Favier, "Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors," ACS Appl Mater Interfaces, vol. 1, pp. 1130-9, May 2009.
    [72]F. faverolle, A. J. Attias, and B. Bloch, "Highly Conducting and Strongly Adhering Polypyrrole Coating Layers Deposited on Glass Substrates by a Chemical Process," Chem Mater, vol. 10, 1998.
    [73]K. Lota, V. Khomenko, and E. Frackowiak, "Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites," Journal of Physics and Chemistry of Solids, vol. 65, pp. 295-301, 2004.
    [74]G. A. Snook, P. Kao, and A. S. Best, "Conducting-polymer-based supercapacitor devices and electrodes," Journal of Power Sources, vol. 196, pp. 1-12, 2011.
    [75]W. Chen, R. B. Rakhi, and H. N. Alshareef, "Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte," Nanoscale, vol. 5, pp. 4134-8, May 21 2013.
    [76]M. P. Bichat, E. Raymundo-Piñero, and F. Béguin, "High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte," Carbon, vol. 48, pp. 4351-4361, 2010.
    [77]M. A. Azam, A. Fujiwara, and T. Shimoda, "Significant Capacitance Performance of Vertically Aligned Single-Walled Carbon Nanotube Supercapacitor by Varying Potassium Hydroxide Concentration," Int. J. Electrochem. Sci, vol. 8, pp. 3902 - 3911, 2013.
    [78]P. Azaïs, L. Duclaux, P. Florian, D. Massiot, M.-A. Lillo-Rodenas, A. Linares-Solano, et al., "Causes of supercapacitors ageing in organic electrolyte," Journal of Power Sources, vol. 171, pp. 1046-1053, 2007.
    [79]P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, et al., "Energy storage in electrochemical capacitors: designing functional materials to improve performance," Energy & Environmental Science, vol. 3, p. 1238, 2010.
    [80]Y. Liang, F. Liang, H. Zhong, Z. Li, R. Fu, and D. Wu, "An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors," Journal of Materials Chemistry A, vol. 1, p. 7000, 2013.
    [81]G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors," Chem Soc Rev, vol. 41, pp. 797-828, Jan 21 2012.
    [82]C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-based supercapacitor with an ultrahigh energy density," Nano Lett, vol. 10, pp. 4863-8, Dec 8 2010.
    [83]W.-Y. Tsai, R. Lin, S. Murali, L. Li Zhang, J. K. McDonough, R. S. Ruoff, et al., "Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from -50 to 80°C," Nano Energy, vol. 2, pp. 403-411, 2013.
    [84]W. S. J. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," J. Am. Chem. Soc, vol. 80, p. 1339, 1958.
    [85]C. Nethravathi and M. Rajamathi, "Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide," Carbon, vol. 46, pp. 1994-1998, 2008.
    [86]H. Seung Hun, J. Hae-Mi, and C. Sung-Ho, "X-ray Diffraction Patterns of Thermally-reduced Graphenes," Journal of the Korean Physical Society, vol. 57, p. 1649, 2010.
    [87]J. K. Florian Banhart, and Arkady V. Krasheninnikov, "Structural Defects in Graphene," ACS Nano, vol. 5, pp. 26-41, 2011.
    [88]K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, "Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets," Nano Lett, vol. 8, pp. 36-41, 2008.
    [89]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007.
    [90]A. Felten, B. S. Flavel, L. Britnell, A. Eckmann, P. Louette, J. J. Pireaux, et al., "Single- and double-sided chemical functionalization of bilayer graphene," Small, vol. 9, pp. 631-9, Feb 25 2013.
    [91]Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, and K. Müllen, "Composites of Graphene with Large Aromatic Molecules," Advanced Materials, vol. 21, pp. 3191-3195, 2009.
    [92]L. Lai, L. Chen, D. Zhan, L. Sun, J. Liu, S. H. Lim, et al., "One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties," Carbon, vol. 49, pp. 3250-3257, 2011.
    [93]Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, and H. Liu, "Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor," Electrochimica Acta, vol. 88, pp. 519-525, 2013.
    [94]A. Arrigo, M. Ha¨vecker, S. Wrabetz, R. Blume, M. Lerch, J. McGregor, et al., "Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination," J. AM. CHEM. SOC., vol. 132, pp. 9616-9630, 2010.
    [95]C. H. Chuang, Y. F. Wang, Y. C. Shao, Y. C. Yeh, D. Y. Wang, C. W. Chen, et al., "The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides," Sci Rep, vol. 4, p. 4525, 2014.
    [96]X. Wang, S. M. Tabakman, and H. Dai, " Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene," J. Am. Chem. Soc, vol. 130, pp. 8152-8153, 2008.
    [97]H. Chen, Y. Yang, Z. Hu, K. Huo, Y. Ma, and Y. Chen, "Synergism of C5N Six-Membered Ring and Vapor-Liquid-Solid Growth of CNx Nanotubes with Pyridine Precursor," J. Phys. Chem. B., vol. 110, pp. 16422-16427, 2006.
    [98]R. J. J. JANSEN and H. V. BEKKUM, "AMINATION AND AMMOXIDATION OF ACTIVATED CARBONS," Carbon, vol. 32, pp. 1507-1516, 1994.
    [99]D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu, and G. Q. Lu, "Nitrogen-Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance," Advanced Functional Materials, vol. 19, pp. 1800-1809, 2009.
    [100]S. Ardizzone, G. Fregonara, and S. Trasatti, "“INNER” AND “OUTER” ACTIVE SURFACE OF RuO2 ELECTRODES," Electrochimica Acta, vol. 35, pp. 263-267, 1990.
    [101]H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, et al., "Capacitance of carbon-based electrical double-layer capacitors," Nat Commun, vol. 5, p. 3317, 2014.
    [102]J. Du, D. Mishra, and J.-M. Ting, "Surface modified carbon cloth for use in electrochemical capacitor," Applied Surface Science, vol. 285, pp. 483-489, 2013.

    下載圖示 校內:2016-08-27公開
    校外:2016-08-27公開
    QR CODE