| 研究生: |
張凱鈞 Chang, Kai-Chun |
|---|---|
| 論文名稱: |
考慮降雨入滲三維邊坡穩定分析之研究 - 以萬山D048大規模崩塌潛勢區為例 Three-dimensional Slope Stability Analysis with Rainfall Infiltration on the Wanshan Landslide |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 大規模崩塌 、萬山 、非飽和入滲 、數值模擬 、GMS 、FLAC3D |
| 外文關鍵詞: | Large-scale landslide, Wanshan, Unsaturated infiltration, Numerical simulation, GMS, FLAC3D |
| 相關次數: | 點閱:145 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了探討萬山D048大規模崩塌區在不同降雨強度下的三維邊坡穩定性分析,本研究使用GMS (Groundwater Modeling System)建立研究區域的三維地質模型及夏季常時地下水位面,並透過地電阻探測資料對數值模型進行簡單的校正,使模型更貼近現實情況。此外,本研究使用FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions)中內建的FISH語言編寫飽和-非飽和滲流場模型,透過基質吸力的變化去修正非飽和土壤的滲透系數與有效應力場,並透過一維砂柱入滲試驗資料驗證模型的適用性,實現非飽和降雨入滲行為。
本研究以SCS曲線號碼法(Soil Conservation Service Curve Number)設計邊坡的有效降雨量,以五種不同降雨強度進行三維邊坡穩定性分析。並將研究區域內的傾斜儀監測值與模擬結果進行比對,檢視兩者間的吻合度,以此驗證模型的可靠性。隨後,根據安全係數將潛勢區內的邊坡進行可能發生崩塌的危險程度分級,並透過剪應變增量推估不同降雨強度下的潛在崩塌深度與體積量。
分析結果顯示,降雨強度200 (mm/day) 便會達到大規模崩塌標準,邊坡的破壞模式以淺層崩塌和土石流為主,並且在潛勢區內的西側野溪與高132線交會處具有大範圍邊坡破壞發生可能性。
To investigate the three-dimensional slope stability analysis in the Wanshan D048 large-scale landslide potential area under different rainfall intensities, this study uses GMS to build a three-dimensional geological model of the study area and the summertime ambient groundwater table and makes corrections to the numerical model through earth-resistivity method data to make the model closer to the real situation. In addition, the saturated-unsaturated infiltration field model was developed using the FISH programming language built into FLAC3D. The infiltration coefficient and effective stress field of unsaturated soil were modified by the variation of matrix suction, and the applicability of the model was verified by the one-dimensional sand column infiltration test data to realize the infiltration behavior of unsaturated rainfall.
In this study, the effective rainfall on the slope was designed by the SCS curve number method, and the three-dimensional slope stability analysis was conducted with five different rainfall intensities.
The conclusions of the results of this study show that when rainfall intensity of 200 mm per day would reach the standard of large-scale landslide. The slope damage pattern is mainly shallow landslide and debris flow.
1. Abbasi, B., Russell, D., Taghavi, R., “FLAC3D mesh and zone quality.” Paper presented at the FLAC/DEM Symposium. China: Itasca Consulting Group, 2013.
2. Aquaveo, “GMS 10.6 Tutorials.”, Retrieved February 28, 2022, from https://www.aquaveo.com/software/gms-learning-tutorials.
3. Azocar, K., Hazzard, J., “The Influence of curvature on the stability of rock slopes.” Paper presented at the 13th ISRM International Congress of Rock Mechanics, 2015.
4. Bishop, A. W., “The principle of effective stress.” Teknisk ukeblad, 39, pp.859-863, 1959.
5. Bodman, G. B., Colman, E., “Moisture and energy conditions during downward entry of water into soils.” Soil Science Society of America Journal, 8(C), pp.116-122, 1944.
6. Brönnimann, C. S., “Effect of Groundwater on Landslide Triggering.” Lausanne, Switzerland, Ecole Polytechnique Federale de Lausanne (Doctoral dissertation, Ph. D. Dissertation, Published), 2011.
7. Chatra, A. S., Dodagoudar, G., Maji, V., “Numerical modelling of rainfall effects on the stability of soil slopes.” International Journal of Geotechnical Engineering, 2017.
8. Chen, L.-K., Chang, C.-H., Liu, C.-H., Ho, J.-Y., “Application of a three-dimensional deterministic model to assess potential landslides, a case study: Antong Hot Spring Area in Hualien, Taiwan.” Water, 12(2), 2020.
9. Croney, D., Coleman, J., “Soil thermodynamics applied to the movement of moisture in road foundations.”, Vol. 3, pp.163-177, 1948.
10. Cronshey, R. G., R. T. Roberts, and N. Miller. “Urban hydrology for small watersheds (TR-55 Rev.).” Hydraulics and hydrology in the small computer age. ASCE, 1985.
11. De jeda, P. S., Sanz, E., Galindo, R., “Historical reconstruction and evolution of the large landslide of Inza (Navarra, Spain).” Natural Hazards, 109(3), pp.2095-2126, 2021.
12. Fookes, P., “Geology for engineers: the geological model, prediction and performance.” Quarterly Journal of Engineering Geology and Hydrogeology, 30(4), pp.293-424, 1997.
13. Fredlund, D. G., Morgenstern, N. R., Widger, R., “The shear strength of unsaturated soils.” Canadian geotechnical journal, 15(3), pp.313-321, 1978.
14. Fredlund, D. G., Rahardjo, H., “Soil mechanics for unsaturated soils:” John Wiley & Sons, 1993.
15. Fredlund, D. G., Xing, A., “Equations for the soil-water characteristic curve.” Canadian geotechnical journal, 31(4), pp.521-532, 1994.
16. Fredlund, D. G., Xing, A., Fredlund, M. D., Barbour, S., “The relationship of the unsaturated soil shear strength to the soil-water characteristic curve.” Canadian geotechnical journal, 33(3), pp.440-448, 1996.
17. Fredlund, M. D., Fredlund, D. G., Zhang, L., “Moving from 2D to a 3D unsaturated slope stability analysis.” PanAm Unsaturated Soils 2017, pp.136-145, 2017.
18. Freeze, R. A., “The mechanism of natural ground‐water recharge and discharge: 1. One‐dimensional, vertical, unsteady, unsaturated flow above a recharging or discharging ground‐water flow system.” Water Resources Research, 5(1), pp.153-171, 1969.
19. Freeze, R. A., Banner, J., “The mechanism of natural ground‐water recharge and discharge: 2. Laboratory column experiments and field measurements.” Water Resources Research, 6(1), pp.138-155, 1970.
20. Green, W. H., Ampt, G., “Studies on Soil Phyics.” The Journal of Agricultural Science, 4(1), pp.1-24, 1911.
21. Itasca, “FLAC3D Documentation.”, Retrieved March 4, 2022, from
http://docs.itascacg.com/flac3d700/contents.html.
22. Juang, C. H., Zhang, J., Shen, M., Hu, J., “Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis.” Engineering Geology, 249, pp.148-161, 2019.
23. Kang, S., Cho, S.-E., Kim, B., Go, G.-H., “Effects of two-phase flow of water and air on shallow slope failures induced by rainfall: insights from slope stability assessment at a regional scale.” Water, 12(3), 2020.
24. Khalili, N., Khabbaz, M., “A unique relationship for χ for the determination of the shear strength of unsaturated soils.” Geotechnique, 48(5), pp.681-687, 1991.
25. Lambe, T. W., Whitman, R. V., “Soil mechanics (Vol. 10).” John Wiley & Sons, 1991.
26. Leong, E. C., Rahardjo, H., “Review of soil-water characteristic curve equations.” Journal of geotechnical and geoenvironmental engineering, 123(12), pp.1106-1117, 1997.
27. Lorig, L., Varona, P., “Rock slope engineering.” London and New York, pp.218-244, 2007.
28. Lu, N., Godt, J. W., “Hillslope hydrology and stability.” Cambridge University Press, 2013.
29. Lu, N., Godt, J. W., Wu, D. T., “A closed‐form equation for effective stress in unsaturated soil.” Water Resources Research, 46(5), 2010.
30. Lu, N., Likos, W., “Unsaturated soil mechanics”, John Wiley&Sons, 2004.
31. Lumb, P., “Slope failures in Hong Kong.” Quarterly Journal of Engineering Geology, 8(1), pp.31-65, 1975.
32. Mein, R. G., Larson, C. L., “Modeling infiltration during a steady rain. Water Resources Research”, 9(2), pp.384-394, 1973.
33. Schnellmann, R., Rahardjo, H., Schneider, H. R., “Controlling parameter for unsaturated soil property functions: validated on the unsaturated shear strength.” Canadian geotechnical journal, 52(3), pp.374-381, 2015.
34. Selby, M. J., “Hillslope materials and processes”. Oxford University Press, 1982.
35. Tsai, Y. J., Syu, F. T., Shieh, C. L., Chung, C. R., Lin, S. S., & Yin, H. Y. “Framework of Emergency Response System for Potential Large-Scale Landslide in Taiwan.” Water, 13(5), 2021.
36. Uchida, T., Yokoyama, O., Suzuki, R., Tamura, K., Ishizuka, T., “A new method for assessing deep catastrophic landslide susceptibility.” International Journal of Erosion Control Engineering, 4(2), pp.32-42, 2011.
37. Van Asch, T. W., Buma, J., Van Beek, L., “A view on some hydrological triggering systems in landslides.” Geomorphology, 30(1-2), pp.25-32, 1999.
38. Van Genuchten, M. T., Nielsen, D., “On describing and predicting the hydraulic properties.” Paper presented at the Annales Geophysicae, 1985.
39. Vanapalli, S., Fredlund, D., Pufahl, D., Clifton, A., “Model for the prediction of shear strength with respect to soil suction.” Canadian geotechnical journal, 33(3), pp.379-392, 1996.
40. Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., “The influence of soil structure and stress history on the soil–water characteristics of a compacted till.” Geotechnique, 49(2), pp.143-159, 1999.
41. Varnes, D. J., “Slope movement types and processes.” Special report, 176, pp.11-33, 1978.
42. Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J., “Infiltration from the pedon to global grid scales: An overview and outlook for land surface modelling.” Vadose Zone Journal, 18(1), 2019.
43. Wines, D., “A comparison of slope stability analyses in two and three dimensions.” Journal of the Southern African Institute of Mining and Metallurgy, 116(5), pp.399-406, 2016.
44. Wyoming State Geological Survey, “Landslides.” Retrieved January 17, 2022, from https://www.wsgs.wyo.gov/hazards/landslides.aspx.
45. Zhang, K., “Failure Mechanism and Stability Analysis of Rock Slope.” Springer Singapore, 2020.
46. 千木良雅弘,「大規模崩塌潛感區」(王文能、陳樹群、吳俊鋐譯),科技圖書股份有限公司,台北,台灣,2011。
47. 大地工程學會,「山坡地監測準則」,2017。檢自:https://www.dingchong.com.tw/download/山坡地監測準則(中華民國大地工程學會)(106年).pdf (Feb. 26, 2022)
48. 中央地質調查所,「地質雲加值應用平台」。檢自:https://www.geologycloud.tw/ (Jan. 1, 2022)
49. 中央氣象局,「地震測報中心」。檢自:
https://scweb.cwb.gov.tw/zh-tw/history (Jan. 27, 2022)
50. 中央氣象局,「觀測資料查詢系統 CODiS」。檢自:
https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (Jan. 28, 2022)
51. 水土保持局,「98年莫拉克颱風重大土石災例速報-高雄茂林-001」,2009。
52. 水土保持局,「大規模崩塌防減災技術發展與應用」,2015。
53. 水土保持局,「萬山潛在大規模崩塌地區監測系統為運與擴充計畫期末報告書」,2015。
54. 水土保持局,「高雄市茂林區D048大規模崩塌區調查及多納溫泉溪集水區治理規劃期末報告書」,2019。
55. 水土保持局,「BigGIS巨量空間資訊系統」。檢自:
https://gis.swcb.gov.tw/ (Apr. 18, 2022)
56. 水土保持局,「土石流防災資訊網」。檢自:
https://246.swcb.gov.tw/ (Feb. 26, 2022)
57. 水土保持局,「歷史影像平台」。檢自:https://photo.swcb.gov.tw/Repository/Database (Mar. 17, 2022)
58. 王彪, 刘义, 邵景力, 王思源, 张黎明,「基于 GMS 的秦王川盆地三维地质模型构建」,工程地质学报,第27卷第1期,頁361-366,2019。
59. 吳俊杰, 王成华, 李广信, 「非饱和土基质吸力对边坡稳定的影响」,岩土力学,第25卷第5期,頁732-736,2004。
60. 吳憶珊,「應用三維數值模擬技術探討地下水位與邊坡崩塌之研究」,國立臺灣海洋大學河海工程學系碩士論文,2018。取自:
https://hdl.handle.net/11296/2jagek
61. 李怡萱,「以三維擬真地層模擬探討降雨入滲對邊坡穩定性影響之研究」,國立成功大學資源工程學系碩士論文,2020。取自:
https://hdl.handle.net/11296/6k7ctm
62. 李威霖,「入滲過程中孔隙水壓變化及其對邊坡穩定影響之研究」,國立成功大學水利及海洋工程學系博士論文,2020。取自:
https://hdl.handle.net/11296/8t2r65
63. 周仕勳, 張文忠,「基於FDM結合大數據預測潛在深層邊坡破壞場址水位依時變化」,第18屆大地工程學術研究討論會,屏東,台灣,2020。
64. 林志平,「我國西南部山坡區域大地工程特性之研究」,國立成功大學土木工程學系碩士論文,2021。取自:https://hdl.handle.net/11296/dpx655
65. 林佳瑩,「大規模崩塌潛勢區致災風險之詳細評估方法與案例」,國立陽明交通大學土木工程系所碩士論文,2021。取自:
https://hdl.handle.net/11296/s6h9ja
66. 林政侑, 洪政義, 蔡政修, 劉文賢, 張景明,「高雄市茂林區 D048 大規模崩塌區之地質監測研究」,坡地防災學報,第19卷第1期,頁1-18,2020。
67. 林奕昇,「臺灣西南部山坡區域穩定性探討與利用雷達回波估計降雨量」,國立成功大學土木工程學系碩士論文(未出版),2022。
68. 拱祥生,「降雨對非飽和土壤邊坡穩定性之影響研究」,國立臺灣科技大學營建工程系碩士論文,1999。
69. 范嘉程, 馮道偉,「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,頁61-74,2003。
70. 國土技術政策綜合研究所,「大規模崩塌導致土砂災損推估方法」,2017。
71. 國家災害防救科技中心,「大規模崩塌災害防治行動綱領」,2015。
72. 張光宗, 葉柏村,「大規模崩塌潛勢評估與分級」。檢自:https://tech.swcb.gov.tw/api/File/1344 (Mar. 24, 2022)
73. 陳昆廷,「堰塞湖天然壩潛勢區位判釋之研究」,國立成功大學水利及海洋工程學系博士論文,2015。取自:https://hdl.handle.net/11296/3w4q97
74. 陳昆廷,「堰塞湖形成機制與預測方法」。檢自:https://tech.swcb.gov.tw/api/File/1376 (Mar. 25, 2022)
75. 經濟部,「出流管制計畫書與規劃書檢核基準及洪峰流量計算方法」,2019。
76. 楊樹榮, 林忠志, 鄭錦桐, 潘國樑, 蔡如君, 李正利,「台灣常用山崩分類系統」,第14屆大地工程學術研究討論會,桃園,台灣,2011。
77. 潘如蕙,「剪力強度折減法應用於層狀土壤邊坡之穩定性研究」,國立成功大學資源工程學系碩士論文,2007。取自:
https://hdl.handle.net/11296/q64654
78. 潘安士,「以有限元素法分析板岩邊坡潛移與漸進破壞行為」,國立中興大學水土保持學系所碩士論文,2011。取自:
https://hdl.handle.net/11296/tgapq5
79. 謝秉軒, 吳建宏,「三維多面體個別元素法在大規模崩塌模擬之研究」,中華防災學刊,第12卷第2期,頁153-160,2020。
80. 羅红明,「降雨入渗条件下滑坡非饱和渗流特性与稳定性研究」,中国地质大学(武汉)博士论文,2008。