簡易檢索 / 詳目顯示

研究生: 王澄祥
Wang, Cheng-Shiung
論文名稱: 有效母體總數估計之研究
The study for estimating effective population size
指導教授: 黃文典
Hwang, Wen-Dean
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 31
中文關鍵詞: 等位基因頻率有效母體總數遺傳漂變馬克勞林展開式配子基因庫
外文關鍵詞: allele frequency, genetic drift, gamete pool, the MacLaurin expansion, effective population size
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   間接利用世代間某等位基因頻率的變化來估計有效母體總數,已是不少生物學家研究的方向。其中 R. S. WAPLES ( 1989 ) 參考 NEI and TAJIMA ( 1983 ) 所提的模式 ( N–T model ) 與抽樣方案,將此方法一般化,此一般化之模式亦為本文主要的參考依據。在推論的過程中,根據 WRIGHT–FISHER ( 1931 ) 模式,等位基因變化量標準化後之變異數 ( F ) 扮演要角。藉由計算 F 的近似期望值,吾人可推得有效母體總數的估計量。因此,也有學者提出不同的 F 計算式,希望藉此改善有效母體總數估計量的估計值。
      模擬過程中發現,當母體中原始的等位基因頻率比較極端或抽樣世代數增加時,原估計值會偏高。為了改善這樣的狀況,我們做了些嘗試。其中利用馬克勞林展開式 ( Maclaurin expansion ) 並取一次近似所得估計量,可以改善原估計量高估之情形,第三章便介紹 R. S. WAPLES 推論的估計量以及吾人所推得的新估計量。在第四章,除了介紹模擬的方法,也會比較 F 的各計算式引入新、舊估計式之結果,以說明新的 F 計算式 Fna 引入有效母體總數估計量的估計值最佳。第五章是結論,並說明目前仍可進行的部份,循此模式可進一步討論的問題,與其他可以考慮的研究方法。最後附上遺傳漂變 ( genetic drift ) 中,等位基因期望值與變異數之推導,以及研究過程中曾考慮的方法以供參考。

     Several authors have explored the temporal method for estimating effective population size ( Ne ) from the standardized variance in allele frequency change ( F ). The model considered in the thesis is proposed by NEI and TAJIMA ( 1981 ), followed by POLLAK ( 1983 ) and generalized by WAPLES ( 1989 ). By the MacLaurin expansion, we derive a new estimator. Computer simulations show that the estimates of our new estimator are, in general, lower than that of the original estimator proposed by WAPLES . Although previous authors have proposed some method for estimating F, such as the Fc of NEI and TAJIMA ( 1981 ) and the Fk of POLLAK ( 1983 ), we also suggest a new estimator for F, said Fna. Not only simulation results indicate that the effects of Fna are much better than that of other estimators of F, but theoretical demonstration can be shown to support the point of view.

    第一章 導論 1 第二章 模式簡介 3 第三章 有效母體總數估計量 5   §3.1 介紹 R. S. WAPLES 推論之有效母體總數估計量 Ne 5   §3.2 利用馬克勞林展開式並取一次近似所得之新估計量 Ne' 10 第四章 電腦模擬結果 13   §4.1 模擬方式介紹與回顧 13   §4.2 將 Fc 與 Fk 引入 Ne、Ne' 之比較與討論 15   §4.3 將新的 Fna 與 Fc、Fk 引入 Ne、Ne' 之比較與討論 18 第五章 結論與發展 22 參考資料 23 附錄一 等位基因頻率在遺傳漂變中的期望值與變異數之推論 25 附錄二 研究過程中曾考慮的方法 29

    [ 1 ] ANDERSON, E. C., E. G. WILLIAMSON and E. A. THOMPSON, ( 2000 ),“Monte Carlo evaluation of the likelihood for Ne from temporally spaced samples.”Genetics, 156, 2109 – 2118.
    [ 2 ] BERTHIER, P., M. A. BEAUMONT, J. M. CORNUET and G. LUIKART, ( 2002 ),
    “Likelihood – based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach.”Genetics, 160, 741 – 751.
    [ 3 ] EDWARDS, A. W. F., ( 1992 ), Likelihood, Expanded Edition. Johns Hopkins University Pres, Baltimore.
    [ 4 ] EWENS, W. J., ( 1979 ), Mathematical Population Genetics. Springer – Verlag, New York.
    [ 5 ] KITADA, S., T. HAYASHI and H. KISHINO, ( 2000 ),“Empirical Bayes procedure for estimating genetic distance between populations and effective population size.”Genetics, 156, 2063 – 2079.
    [ 6 ] KRIMBAS, C. B. and S. TSAKAS, ( 1971 ),“The genetics of Dacus oleae. V. Changes of esterase polymorphism in a natural population following insecticide control ─ selection or drift?”Evolution, 25, 454 – 460.
    [ 7 ] LOUKAS, M., C. B. KRIMBAS and Y. VERGINI, ( 1979 ),“The genetics of Drosophila subobscura populations. IX. Studies on linkage disequilibrium in four natural populations.”Genetics, 93, 497 – 523.
    [ 8 ] NEI, M. and F. TAJIMA, ( 1981 ),“Genetic drift and estimation of effective population size,”Genetics, 98, 625 – 640.
    [ 9 ] PAMILO, P. and S. VARVIO – AHO, ( 1980 ),“On the estimation of population size from allele frequency changes.”Genetics, 95, 1055.
    [10] POLLAK, E., ( 1983 ),“A new method for estimating the effective population size from allele frequency changes.”Genetics, 104, 531 – 548.
    [11] RAO, C. R., ( 1973 ), Linear Statistical Inference and Its Applications, Ed. 2. John Wiley & Sons, New York.
    [12] REYNOLDS, J., B. S. WEIR and C. C. COCKERHAM, ( 1983 ),“Estimation of the co - ancestry coefficient: basis for a short – term genetic distance.”Genetics, 105, 767 – 779.
    [13] TAJIMA, F. and M. NEI, ( 1984 ),“Note on genetic drift and estimation of effective population size.”Genetics, 106, 569 – 574.
    [14] TALLMON, D. A., G. LUIKART and M. A. BEAUMONT, ( 2004 ),“Comparative evaluation of a new effective population size estimator based on approximate Bayesian computation.”Genetics, 167, 977 – 988.
    [15] TAYLOR, C. E. and G. C. GORMAN, ( 1975 ),“Population genetics of a colonizing lizard: natural selection for allozyme morphs in Anolis grahami.”Heredity, 35, 241 – 247.
    [16] WAPLES, R. S., ( 1989 ),“A generalized approach for estimating effective population size from temporal changes in allele frequency.”Genetics, 121, 379 – 392.
    [17] WILLIAMSON, E. G. and M. SLATKIN, ( 1999 ),“Using maximum likelihood to estimate population size from temporal changes in allele frequencies.”Genetics, 152, 755 – 761.

    下載圖示 校內:2007-07-22公開
    校外:2007-07-22公開
    QR CODE