| 研究生: |
施奕丞 Shih, Yi-Cheng |
|---|---|
| 論文名稱: |
以氧化鋁共同擔載鈣鍶離子催化甘油寡聚反應之研究 Study on Heterogeneously Catalyzed Oligomerization of Glycerol over Alumina Supported Ca/Sr Mixed Oxides |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 醚化反應 、氧化鋁 、鈣 、鍶 、甘油 、二聚甘油 、三聚甘油 |
| 外文關鍵詞: | Etherification, γ-Alumina, Glycerol, Diglycerol, Triglycerol, Strontium, Calcium |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業革命的開啟,使能源成為人類經濟成長、維持生活水平不可或缺的因素之一,科技文明的迅速發展,也導致能源需求日益增長。石化燃料為主要能源使用來源,除了在使用上會對環境造成破壞,其有限量的資源也遲早被消耗殆盡,因此,具永續性、環保及低汙染的再生能源在近年來備受重視,而其中,又以生質柴油為備受關注的替代性能源之一。然而,生質柴油的大量生產,使得其主要副產物¬¬¬甘油在市場上出現了供需失衡的情形,導致其價格驟降進而影響到生質柴油產業經濟,因此,尋求甘油的高值化應用以鞏固其原料價格,為穩定生質柴油產業市場重要的解決途徑。
本研究利用Dean-Stark反應系統進行無溶劑之甘油醚化反應,以生成直鏈型二聚甘油與三聚甘油為目標,將商用氧化鋁以含浸法改質,共同擔載鈣鍶作為催化甘油醚化反應之觸媒,探討其催化效果與醚化反應之參數,包含改質鍛燒溫度、含浸量、鈣鍶比例、觸媒甘油重量比及動力學分析。並使用XRD, FT-IR, SEM, TPD, BET以及TGA等儀器分析觸媒特性並探討其催化效果。
本實驗將商用氧化鋁作為載體,以含浸法共同擔載鈣鍶活性物,成功提升甘油醚化反應之甘油轉化率與直鏈型二聚甘油及三聚甘油選擇率,由實驗篩選出最佳改質條件為鈣鍶比例1:1、含浸量8 mmol/g alumina及鍛燒溫度900°C的鈣鍶改質氧化鋁觸媒Ca(50%) & Sr(50%)/Alumina-8mmol-900°C,在260°C的溫度下反應4小時可得到75%的甘油轉化率以及87%以上的直鏈型二聚甘油與三聚甘油選擇率。
In this work, the solvemt-less etherification of glycerol to oligomers using alumina supported Ca and Sr catalysts was studied. These catalysts were obtained with impregnation of strontium and calcium onto γ-alumina (γ-Al2O3) in Sr(NO3)2 and Ca(NO3)2 solutions. The evidence for synergistic effects between active Ca and Sr species was demonstrated by the etherification reactions over a series of Ca-Sr-Al catalysts with varied Ca-to-Sr molar ratios. Effect of calcination temperatures of these supported catalysts, from 600 °C to 900 °C, on the resultant reusability and conversion efficiency of glycerol to oligomers and the selectivity of linear and branched oligomer to cyclic ones were investigated. The catalyst properties were characterized by various instruments including BET, TPD, XRD and SEM, and the ICP-OES analysis was performed to confirm the leaching of the metal species in the liquid phase of the reaction mixture. With Ca and Sr supported on γ-alumina catalyst, the catalyzed etherification reactions were carried out at 260 °C with 3.5 wt% Ca/Sr/γ-alumina calcined at 900 °C in nitrogen atmosphere. Under the optimal reaction conditions, near 76% glycerol could be converted to glycerol oligomers after 4h from the onset of the etherification reaction. Moreover, a selectivity near 87% of di- and tri-glycerol in linear and branched forms over the cyclic form could be achieved.
Aleksander Hejna, Paulina Kosmela, Krzysztof Formela, Łukasz Piszczyk, Józef THaponiuk. Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 66, 449-475 (2016)
Atabani AE, Silitonga AS, Irfan Anjum Badruddina, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16, 2070-2093 (2012)
ABG Inc. Glycerin market analysis. U.S. Soybean Export Council Inc. (2010)
Ayoub M, Abdullah AZ. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energy Rev, 16, 2671-2686 (2012)
Ayoub M, Khayoon MS, Abdullah AZ. Synthesis of Oxygenated Fuel Additives via the Solventless Etherification of Glycerol. Bioresour. Technol, 112, 308-312 (2012)
Barrault J, Clacens JM, Pouilloux Y. Selective Oligomerization of Glycerol Over Mesoporous Catalysts. Top. Catal., 27, 137-142 (2004)
Behrens H, Mieth G. Synthese. Charakterisierung und Applikation von Polyglycerolen und Polyglycerolfettsa¨uren. Die Nahrung, 28, 815-835 (2004)
Bonato JA, Headridge JB, Morrison RJ. Chemistry serves the SouthPacific. (1987)
Bondioli P. From oil seeds to industrial products: present and near future of oleo chemistry. Italian J Agron, 7, 129-135 (2004)
Bowman M, Hilligoss D, Rasmussen S, Thomas R. Biodiesel: a renewable and biodegradable fuel. Hydrocarbon Process, 85, 103-106 (2006)
Calatayud M, Ruppert AM, Weckhuysen BM. Theoretical Study on the Role of Surface Basicity and Lewis Acidity on the Etherification of Glycerol over Alkaline Earth Metal Oxides. Chem. Eur. J., 15, 10864-10870 (2009)
Cassel S, Debaig C, Benvegnu T, Chaimbault P, Lafosse M, Plusquellec D, Rollin P. Original Synthesis of Linear, Branched and Cyclic Oligoglycerol Standards. Eur. J. Org. Chem., 5, 875-896 (2001)
Chung YH, Rico DE, Martinez CM, Cassidy TW, Noirot N, Ames A. Effects of feeding dry glycerin to early postpartum Holstein dairy cows on lactational performance and metabolic profiles. Journal of Dairy Science, 90, 5682-5691 (2007)
Ciriminna R, Pina, CD, Rossi M, Pagliaro M. Understanding the glycerol market. European Journal of Lipid Science and Technology, 116, 1432-1439 (2014)
Clacens JM, Pouilloux Y, Barrault J. Selective Etherification of Glycerol to Polyglycerols Over Impregnated Basic MCM-41 Type Mesoporous Catalyst. Appl. Catal. A, 227, 181−190 (2002)
Cottin K, Clacens JM, Pouilloux Y, Barrault J. Preparation of Diglycerol and Triglycerol by the Direct Polymerization of Glycerol in the Presence of the New Solid Catalysts. Ol., Corps Gras, Lipide, 5, 407-412 (1998)
Donald L, Pavia, Gary M, Lampman GS, Kriz, James A, Vyvyan. Introduction to Spectroscopy. (2010)
García-Sancho C, Moreno-Trost R, Merida-Robles JM, Santamaría-Gonzalez J, Jimenez-Lopez A, Torres PM. Etherification of Glycerol to Polyglycerols Over MgAl Mixed Oxides. Catal. Today, 167, 84−90 (2011)
Garti N, Aserin A, Zaidman B. Polyglycerol Esters : Optimization and Techno-Economic Evaluation. J. Am. Oil. Chem. Soc., 58, 878-883. (1981)
Gregg F. SVO: Powering Your Vehicle With Straight Vegetable Oil.
Gunstone F. The chemistry of oils and fats : sources, composition, properties and uses. (2004)
Israel AU, Obot IB, Asuquo JE. Recovery of glycerol from spent soap lye by-product of soap manufacture. E-Journal of Chemistry, 5, 940-945 (2008)
Kraft A. Method for Preparing Polymers of Glycerol with a Saponite Catalyst. (2002)
Martin A, Richter M. Oligomerization of glycerol - a critical review. European Journal of Lipid Science and Technology, 113, 100-117 (2011)
Karam A, Sayoud N, Vigier KDO, Lai J, Liebens A, Oldani C, Jérôme FJ. Heterogeneously-acid catalyzed oligomerization of glycerol over recyclable superacid Aquivion® PFSA Mol. Catal. A: Chem, 422, 84-88 (2016)
Martin A, Checinski MP, Richter M. Tuning of Diglycerol Yield and Isomer Distribution in Oligomerization of Glycerol Supported by DFT-Calculations. Catal. Commun., 25, 130-135 (2012)
Medeiros MA, Araujo MH, Augusti R, deOliveira LCA, Lago RM. Acid-Catalyzed Oligomerization of Glycerol Investigated by Electrospray Ionization Mass Spectrometry. J. Braz. Chem. Soc., 20, 1667-1673 (2009)
Medeiros MA, Leite CMM, Lago RM. Use of Glycerol By-Product of Biodiesel to Produce an Efficient Dust Suppressant. Chem. Eng. J., 180, 364-369 (2009)
Meisam Hasheminejad, Meisam Tabatabaei, Yaghoub Mansourpanah, Mahdi Khatami far, Azita Javanid. Upstream and downstream strategies to economize biodiesel. Bioresource Technology, 102, 461-468 (2011)
Melero JA, Vicente G, Morales G. Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. Applied Catalysis A: General, 346, 44-51 (2008)
Miller S. The Soapmaker’s Companion: A Comprehensive Guide With Recipes, Techniques & Know‐How (1997)
Nag A, Kutty TRN. Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4: Eu, Dy,. J. Alloys Compd., 354, 221-223 (2003)
Ooi TL, Yong KC, Hazimah AH, Dzulkefty K, Wan Y. Crude Glycerine Recovery from Glycerol Residue Waste from a Palm Kernel Oil Methyl Ester Plant. Journal of Oil Palm Research, 13, 16-22 (2001)
Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. From glycerol to value-added products. Angew. Chem. Int. Ed., 46, 4434-4440 (2007)
Pagliaro M, Rossi M. The future of glycerol. New usages for a versatile raw
Perry RH, Green DW, Maloney JOH. Perry’s chemical engineers’handbook (1997)
Richter M, Eckelt R, Krisnandi YK, Martin A. Verfahren zur Selektiven Herstellung von Linearem Diglycerin. Chem. Ing. Tech., 80, 1573-1577 (2008)
Richter M, Krisnandi YK, Eckelt R, Martin A. Homogeneously Catalyzed Batch Reactor Glycerol Etherification by CsHCO3. Catal. Commun., 9, 2112-2116 (2008)
Ruppert AM, Meeldijk JD, Kuipers BWM, Erné BH, Weckhuysen BM. Glycerol Etherification Over Highly Active CaO Based Materials: New Mechanistic Aspects and Related Colloidal Particle Formation. Chem. Eur. J., 14, 2016-2024 (2008)
Salehpour S, Dubé MA. Towards the Sustainable Production of Higher Molecular Weight Polyglycerol. Macromol.Chem. Phys., 212, 1284-1293 (2011)
Marc Sutter, Eric Da Silva, Nicolas Duguet, Yann Raoul, Estelle Metay, Marc Lemaire. Glycerol Ether Synthesis: A Bench Test for Green Chemistry Concepts and Technologies. Chem. Rev., 115, 8609–8651 (2015)
Seiden O, Martin JB. Process for Preparing Polyglycerol. (1976)
Singh BP. Industrial crops and uses. (2010)
Sivaiah MV, Robles-Manuel S, Valange S, Barrault J. Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols. Catalysis Today, 198, 305-313 (2012)
Smith C. Biodiesel revolution gathering momentum (2004)
Socrates G. Infrared and Raman Characteristic Group Frequencies. (2000)
Stamatelatou K. Advanced oil crop bio-refineries. (2011)
Sunder, Hanselmann R, Frey H, Mu lhaupt R. Controlled synthesis of hyperbranched polyglycerols by ring opening multibranching polymerization. Macromolecules, 32, 4240-4246 (1999)
Sunder, Kramer M, Hanselmann R, Mu lhaupt R, Frey H. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew. Chem., Int. Ed., 38, 3552-3555 (1999)
Tamalampudi S, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H. Enzymatic production of biodiesel from Jatrophaoil : a comparative study of immobilized-whole cell and commercial lipasesasa biocatalyst. Biochemical Engineering Journal, 39, 185-189 (2008)
Thompson JC, He BB. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22, 261-265 (2006)
Tomiie A, Shinozaki M, Yamada T, Kuriyama J. Moisturizing Effects of Diglycerol Combined with Glycerol on Human Stratum Corneum. Journal of oleo science, 65, 681-684 (2016)
Walker KC, Korbitz W. Rationale and economics of a British biodiesel industry. (1994)
Wang Y, Wang X, Liu Y, Ou S, Tan Y, Tang S. Refining of biodiesel by ceramic membrane separation. Fuel Processing Technology, 90, 422-427 (2009)
Wilms D, Stiriba SE, Frey H. Hyperbranched Polyglycerols: From the Controlled Synthesis of Biocompatible Polyether Polyols to Multipurpose Applications. Acc. Chem. Res., 43, 129−141 (2010)
Wittcoff H, Roach JR, Miller SE. Polyglycerols. II. Syntheses of Diglycerol. J. Am. Chem. Soc., 71, 2666-2668 (1949)
Wittcoff H, Roach JR, Miller SE. Polyglycerols, I. The Identification of Polyglycerol Mixtures by the Procedures of Allylation and Acetonation: Isolation of Pure Diglycerol. J. Am. Chem. Soc., 69, 2655-2657 (1947)
Zajic J. Polyglycerol, IV. Kinetics of the polymerisation of glycerol. Sbornık vysoke skoly chemicko-technologicke v praze., 9, 91–101 (1966)
任春芳, 周立國, 楊電青. 聚甘油羥值測定方法的改進研究. 山東輕工業學院學報, 2 (2007)
張金廷, 施永城. 聚合甘油的性值及其應用. 日用化學品科學, 28, 10 (2005)
王仁浪. 鹼催化劑製備中等聚合度聚甘油工藝研究. 碩士論文, 環境與化學工程學院, 南昌市 (2013)
王力炯, 史鴻鑫, 項菊萍, 武宏科, 陳力軍, 劉秋平. 聚甘油的鹼催化合成. 雲南化工, 37, 1 (2010)
王彬, 倪永全. 聚甘油的折光率與聚合度. 無錫輕工大學學報, 19, 3 (2000)
陳勁愷. 擔載鈣離子之沸石觸媒應用於甘油醚化反應合成聚甘油之研究. 碩士論文, 化學工程學系, 國立成功大學, 台南市 (2016)
陳宥儒. 以γ-氧化鋁擔載鍶離子催化甘油醚化反應之研究. 碩士論文, 化學工程學系, 國立成功大學, 台南市 (2017)