簡易檢索 / 詳目顯示

研究生: 陳彥廷
Chen, Yen-Ting
論文名稱: 奈米銀漿料的製備及性質研究
Preparation and Properties of Nano-silver Pastes
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 47
中文關鍵詞: 奈米銀漿料銅對銅接合低溫燒結
外文關鍵詞: Nano-silver pastes, copper-to-copper bonding, low temperature sintering
相關次數: 點閱:93下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功合成被庚酸保護的奈米銀粒子,也合成出銀錯合物2-乙基己酸銀,並利用三滾筒式混料機混合奈米銀粒子、2-乙基己酸銀和二甲基乙醯胺,製備出一種三元銀漿料 — Paste PM03。透過改變2-乙基己酸銀添加比例和熱處理溫度並量測電阻率和剪切強度找出最適合應用的參數,也透過SEM觀察破斷面分析燒結後微結構和性質之間的關聯。最適當參數為添加17.5 wt% 2-乙基己酸銀的Paste PM03-17.5在250 oC熱壓30分鐘,電阻率為 (3.50±0.02)x10-7 Ω∙m,剪切強度為57.48 MPa。 300 oC熱壓雖然電阻率更低且剪切強度更高,但改善情況並不顯著。

    Silver 2-ethylhexanoate and silver nanoparticles were synthesized and used to prepare a nano-silver paste: paste PM03. We optimized the amount of silver 2-ethylhexanoate added and the heating temperature to obtain the best performance. The relationship between the microstructures and properties was studied. Less porosity was shown to lead to better resistivity and shear strength. Thermocompression of the paste PM03 at 250 oC with 10 MPa pressure for 30 minutes was found to be the proper condition for copper-to-copper bonding. The resistivity was (3.50±0.02)x10-7 Ω∙m, and the shear strength was 57.48 MPa. Thermocompression of the paste PM03 at 300 oC with 10 MPa pressure for 30 minutes resulted in lower resistivity and higher shear strength than thermocompression at 250 oC did, but the difference wasn’t obvious.

    摘要..................................................... III Extended Abstract....................................... III 致謝.................................................... XVI 目錄................................................... XVII 圖目錄................................................... XX 表目錄................................................. XXII 第一章 緒論.............................................. 1 1.1 前言.............................................. 1 1.2 研究動機.......................................... 1 第二章 文獻回顧與原理.................................... 3 2.1 金屬奈米粒子製備.................................. 3 2.1.1 保護基的作用與影響................................ 3 2.1.2 還原劑的作用與影響................................ 4 2.1.3 反應時間影響...................................... 5 2.2 奈米銀粒子應用.................................... 5 2.2.1 殺菌劑............................................ 5 2.2.2 奈米銀墨水及奈米銀漿料............................ 5 2.3 奈米粒子燒結機制.................................. 8 2.3.1 燒結機構與階段.................................... 8 2.3.2 奈米粒子燒結..................................... 10 2.4 3D封裝堆疊....................................... 11 第三章 實驗方法與步驟................................... 14 3.1 藥品與儀器....................................... 14 3.1.1 實驗藥品......................................... 14 3.1.2 實驗儀器......................................... 14 3.2 實驗步驟......................................... 16 3.2.1 奈米銀粒子合成................................... 16 3.2.2 2-乙基己酸銀合成................................. 17 3.2.3 奈米銀漿料製備................................... 17 3.2.4 電阻率試片製作及量測............................. 18 3.2.5 熱壓及剪切強度測試............................... 18 3.3 儀器分析原理與方法............................... 20 3.3.1 場發射掃描式電子顯微鏡........................... 20 3.3.2 功能性穿透式電子顯微鏡........................... 20 3.3.3 X光繞射分析儀.................................... 21 3.3.4 熱重分析儀....................................... 21 3.3.5 傅立葉轉換紅外光譜儀............................. 22 3.3.6 四點探針薄膜量測儀............................... 22 第四章 結果與討論....................................... 23 4.1 奈米銀粒子製備及性質之研究....................... 23 4.1.1 奈米銀粒子製備................................... 23 4.1.2 奈米銀粒子性質鑑定............................... 23 4.2 2-乙基己酸銀製備及性質研究....................... 26 4.2.1 2-乙基己酸銀製備................................. 26 4.2.2 2-乙基己酸銀性質鑑定............................. 27 4.3 奈米銀漿料製備................................... 30 4.4 2-乙基己酸銀對奈米銀漿料性質影響之研究........... 30 4.4.1 2-乙基己酸銀添加比例對奈米銀漿料電性之影響....... 30 4.4.2 2-乙基己酸銀添加比例對銅銅對接強度之影響......... 32 4.4.3 2-乙基己酸銀添加比例對奈米銀漿料燒結結構之影響... 33 4.5 熱處理溫度對奈米銀漿料性質影響之研究............. 36 4.5.1 熱處理溫度對奈米銀漿料電性之影響................. 36 4.5.2 熱處理溫度對銅銅對接強度之影響................... 37 4.5.3 熱處理溫度對奈米銀漿料燒結結構之影響............. 38 第五章 結論............................................. 41 參考文獻................................................. 42

    1. S. Iravani, H.K., S.V. Mirmohammadi and B. Zolfaghari, Synthesis of silver nanoparticles chemical, physical and biological methods. Research in Pharmaceutical Sciences, 2014. 9(6): p. 385-406.
    2. Yang, S.M., et al., Generation of charged nanoparticles during thermal evaporation of silver at atmospheric pressure. Journal of Nanoscience and Nanotechnology, 2015. 15(11): p. 8418-8423.
    3. Xu, B., et al., Preparation of silver nanoparticles colloid by pulsed laser ablation. Zhongguo Jiguang/Chinese Journal of Lasers, 2007. 34(11): p. 1582-1588.
    4. Stasic, J., et al., Focusing geometry-induced size tailoring of silver nanoparticles obtained by laser ablation in water. Laser Physics, 2014. 24(10).
    5. Chandran, K., S. Song, and S.-I. Yun, Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. 2014.
    6. Nasretdinova, G.R., et al., Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 2015. 50: p. 69-72.
    7. Ankireddy, K., et al., Highly conductive short chain carboxylic acid encapsulated silver nanoparticle based inks for direct write technology applications. J. Mater. Chem. C, 2013. 1(3): p. 572-579.
    8. Yamamoto, M., Y. Kashiwagi, and M. Nakamoto, Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir, 2006. 22(20): p. 8581-8586.
    9. Filippo, E., et al., Controlled synthesis and chain-like self-assembly of silver nanoparticles through tertiary amine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 417: p. 10-17.
    10. Qin, Y., et al., Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 372(1-3): p. 172-176.
    11. Song, Y., et al., Formation process of silver nanoparticles in DTAB/SDBS/PVP aqueous solution. Journal of Experimental Nanoscience, 2011. 6(3): p. 263-269.
    12. Kundu, S., K. Wang, and H. Liang, Sized-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Miunte Using Microwave Irradiation. J. Phys. Chem. C, 2009. 113(1): p. 134-141.
    13. Wu, J.-T. and S.L.-C. Hsu, Preparation of triethylamine stabilized silver nanoparticles for low-temperature sintering. Journal of Nanoparticle Research, 2011. 13(9): p. 3877-3883.
    14. Xu, F., Q. Zhang, and Z. Gao, Simple one-step synthesis of gold nanoparticles with controlled size using cationic Gemini surfactants as ligands: Effect of the variations in concentrations and tail lengths. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 417: p. 201-210.
    15. Lee, K.J., et al., Direct synthesis and bonding origins of monolayer-protected silver nanocrystals from silver nitrate through in situ ligand exchange. J Colloid Interface Sci, 2006. 304(1): p. 92-7.
    16. An, B.H., et al., CoPt nanoparticles by a modified polyol process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313-314: p. 250-253.
    17. Esmaeili-Zare, M., M. Salavati-Niasari, and A. Sobhani, Sonochemical synthesis of HgSe nanoparticles: Effect of metal salt, reaction time and reductant agent. Journal of Industrial and Engineering Chemistry, 2014. 20(5): p. 3518-3523.
    18. Choi, O., et al., The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res, 2008. 42(12): p. 3066-74.
    19. Xiu, Z.M., et al., Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett, 2012. 12(8): p. 4271-5.
    20. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 2000. 52(4): p. 662-668.
    21. Awasthi, K.K., et al., Silver Nanoparticles and Carbon Nanotubes Induced DNA Damage in Mice Evaluated by Single Cell Gel Electrophoresis. Macromolecular Symposia, 2015. 357(1): p. 210-217.
    22. Quadros, M.E. and L.C. Marr, Environmental and Human Health Risks of Aerosolized Silver Nanoparticles. Journal of the Air & Waste Management Association, 2010. 60(7): p. 770-781.
    23. Shim, I.-K., et al., An organometallic route to highly monodispersed silver nanoparticles and their application to ink-jet printing. Materials Chemistry and Physics, 2008. 110(2-3): p. 316-321.
    24. Shin, K.-Y., et al., Characterization of Inkjet-Printed Silver Patterns for Application to Printed Circuit Board (PCB). Journal of Electrical Engineering and Technology, 2013. 8(3): p. 603-609.
    25. Kim, D., et al., Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films, 2007. 515(19): p. 7692-7696.
    26. Son, J.-H., et al., Very thin spin-coated silver films via transparent silver ink for surface plasmon resonance sensor applications. Journal of Nanoscience and Nanotechnology, 2012. 12(7): p. 5827-5829.
    27. Hoenig, R., et al. Impact of screen printing silver paste components on the space charge region recombination losses of industrial silicon solar cells. 2012. Elsevier.
    28. Egelkraut, S., et al. Evolution of shear strength and microstructure of die bonding technologies for high temperature applications during thermal aging. in 12th Electronics Packaging Technology Conference, EPTC 2010, December 8, 2010 - December 10, 2010. 2010. Singapore, Singapore: IEEE Computer Society.
    29. Lee, Y.S., et al., Laser-sintered silver nanoparticles as a die adhesive layer for high-power light-emitting diodes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014. 4(7): p. 1119-1124.
    30. Wang, T., et al., Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection. Journal of Electronic Materials, 2007. 36(10): p. 1333-1340.
    31. Kim, M.-K., et al. Laser sintering of the printed silver ink. in 2009 IEEE International Symposium on Assembly and Manufacturing, ISAM 2009, November 17, 2009 - November 20, 2009. 2009. Seoul, Korea, Republic of: IEEE Computer Society.
    32. Sasaki, K. and N. Mizumura. Development of low temperature sintered nano silver pastes using MO technology and resin reinforcing technology. in 2013 IEEE 63rd Electronic Components and Technology Conference, ECTC 2013, May 28, 2013 - May 31, 2013. 2013. Las Vegas, NV, United states: Institute of Electrical and Electronics Engineers Inc.
    33. Kim, K.-S., et al., The critical role of Ag nanowires in the improvement of conductivity and flexibility of circuits fabricated with hybrid Ag nanopaste. Journal of Materials Science: Materials in Electronics, 2015. 26(11): p. 8644-8651.
    34. Lu, C.-A., et al., Characterization of the Low-Curing-Temperature Silver Paste with Silver 2-Ethylhexanoate Addition. Japanese Journal of Applied Physics, 2007. 46(1): p. 251-255.
    35. Chiang, Y.-J., et al., Characteristics of silver powders synthesized from silver 2-ethylhexanoate and Di-n-octylamine. Journal of Electroceramics, 2013. 31(1-2): p. 109-116.
    36. Kuczynski, G.C., Self-Diffusion in Sintering of Metallic Particles. Metallurgical and Materials Transactions C, 1949. 185: p. 169-178.
    37. Coble, R.L., Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models. Journal of Applied Physics, 1961. 32(5): p. 787.
    38. Coble, R.L., Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts. Journal of Applied Physics, 1961. 32(5): p. 793.
    39. 蘇金源 and 郭金國, 粉末冶金學. 2001, 臺北市: 全華科技圖書股份有限公司.
    40. Knözinger, H. and E. Taglauer, Spreading and Wetting, in Preparation of Solid Catalysts. 2008, Wiley-VCH Verlag GmbH. p. 501-526.
    41. Mirjalili, M. and J. Vahdati-Khaki, Prediction of nanoparticles' size-dependent melting temperature using mean coordination number concept. Journal of Physics and Chemistry of Solids, 2008. 69(8): p. 2116-2123.
    42. Murayama, T., et al. TSV etching process for high capacitor and TSV reliable integration. in 47th International Symposium on Microelectronics: Future of Packaging, IMAPS 2014, October 13, 2014 - October 16, 2014. 2014. San Diego, CA, United states: IMAPS-International Microelectronics and Packaging Society.
    43. Shin, D., J. Suh, and Y. Cho, Effect of pulse interval on TSV process using a picosecond laser. Journal of Laser Micro Nanoengineering, 2012. 7(2): p. 137-142.
    44. Wang, S. and S.W. Ricky Lee. Fast copper plating process for through silicon via (TSV) filling. in ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, November 11, 2011 - November 17, 2011. 2011. Denver, CO, United states: American Society of Mechanical Engineers (ASME).
    45. Hayashi, T., et al. High speed copper electrodeposition for Through Silicon Via(TSV). in Processing Materials of 3D Interconnects, Damascene and Electronics Packaging - 220th ECS Meeting, October 9, 2011 - October 14, 2011. 2012. Boston, MA, United states: Electrochemical Society Inc.
    46. Hsu, H.-J., et al. A novel high coplanarity lead free copper pillar bump fabrication process. in 2009 IEEE International Interconnect Technology Conference, IITC 2009, June 1, 2009 - June 3, 2009. 2009. Sapporo, Hokkaido, Japan: IEEE Computer Society.
    47. Yu, J., et al. Reliability study on copper pillar bumping with lead free solder. in 9th Electronics Packaging Technology Conference, EPTC 2007, December 12, 2007 - December 12, 2007. 2007. Singapore: Institute of Electrical and Electronics Engineers Inc.
    48. Li, W.-H., et al., Low-temperature Cu-to-Cu bonding using silver nanoparticles stabilised by saturated dodecanoic acid. Materials Science and Engineering: A, 2014. 613: p. 372-378.
    49. Yan, J., et al., Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packaging application. Journal of Physics: Conference Series, 2012. 379: p. 012024.
    50. Yan, J., et al., Polymer-Protected Cu-Ag Mixed NPs for Low-Temperature Bonding Application. Journal of Electronic Materials, 2012. 41(7): p. 1886-1892.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE